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1. SUNIMARY

1.1 An Overview

This is the rhird annual report f,,r Contract D-CA.76- 5-C-0010. entitled
"Parallel Ai,-,ritimns ftr C,)lputer 'isi ,n Task B." sp,,n-s,)red by the De-

fetil.e Advac,:e Research Pr Y-r- \- ,ic v DARPA,. .:tud a' liniiteredt hv

the U.S. Ar my Engineer T ,p,)graplu1c Laboratories ETLi.

The time periodt coveret h thiu report is the -scond Year that we had the

Cniiection :dacihine CM\, availa,,ut, r,, ,is. Dunlin tie salle period ft tie. we

succe-.-,fully ,temonstrated the Visinn Machine proce.sing images and

recognizing ,ijects througii the jire-ration of several visual cues. The first

version of the Vision Machine svstem. which is based on the CM[ and uses 3.1n

Eye-Head robot as an input (levice. i- now complete and functional. In parellel

with the development of the Vision Machine. w, have also continued to study

the performance of alternative, notnconventional architectures for navigation.

The bods of rhis report gives an ,)verview of the results of our research during
the third y"ear o tundng. Details can be found in the appended publications.

1.2 The Vision 'Machine

The Vision Machine is a computer system that integrates several vision cues

to achieve high performance in unstructured environments for the tasks of

recognition and navigation. It is also a test-bed for our theoretical progress in

low- and high-level vision algorithms, their parallel implementation, and their

integration. As discussed in previous reports, the Vision Machine consists of

a movable two camera Eye-Head system, the input device, and a Connection
'Machine. the main computational engine. During the third year of funding,

we developed and implemented several parallel early vision algorithms which
compute edge detection, stereo, motion. texture. and surface color in close

to real-time. We have now integrated these algorithms with an integration

stage based on the technique of coupled Markov Random Field (.MRF) models

that provides a cartoon-like map of the discontinuities in the scene. In recent

months we have also obtained a partial labeling of brightness edges in terms
of their physical origin. As planned. we have interfaced the output of our

integration stage with a model-based parallel recognition algorithm. We are

beginning a project together with Electrical Engineering faculty (with non-

DARPA funding) to develop analog and hybrid Very Large Scale Integration
VLSI) implementations of the main Vision Machine components.
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2. ACHIEVEMENTS IN THE THIRD YEAR

i Below is a brief overview of our main achievements.

n 2.1 The Vision Machine

The overall organization of tie Vision Machine systeliis ased. o parallel

processing of tie images by independent algorithins or inocdules correspnmdini
to 1ifferent v'isulal cues. Edges are extracted ,isinil Cannv's ,'le d,-tector.

-Eie stereo module computes disparity from the left aid right images. The
motion module estimates an approximation to the optical flow from pairs of

ml images in a time sequence. The texture module computes texture attributes
Isucni as density and orientation of textons. The color algorithm provides an
estimate of the spectral albedo of the surfaces. independently of the ffective
illumination. that is, illumination gradients and shading effects, as suggested
by Hurlbert and Poggio see Poggio. 19851.

The measurements provided by the early vision modules are typically
noisv, and possibly sparse iftor stereo and motion). They are smoothed and
made dense by exploiting known constraints within each process (for example.,
that disparity is smooth). This is the stage of approximation and restoration
of data, performed using a Markov Random Field (MRF) model. Simultane-
ously, discontinuities are found in each cue. Prior knowledge of the behavior
of discontinuities is exploited, for instance the fact that they are continuous
lines, not isolated points. Detection of discontinuities is aided by the infor-
mation provided by brightness edges. Thus each cue, disparity, optical flow.
texture, and color, is coupled to the edges in brightness.

The full scheme involves finding the various types of physical discontinu-
ities in the surfaces, depth discontinuities (extremal edges and blades). ori-
entation discontinuities, specular edges, albedo edges (or marks), and .1hadow
edge3, and coupling them with each other and back to the discontinuities in

the visual cues. So far we have implemented only the coupling of brightness
edges to each of the cues provided by the early algorithm. As we will discuss
later. the technique we used to approimate. to simultaneously detect discon-
tinuities, and to couple the different processes, is based on MRF models. The
output of the system is a set of labeled discontinuities of the surfaces around

the viewer. In our implemented version of the system, we find discontinuities
in disparity, motion, texture. and color. These discontinuities, taken together,
represent a "cartoon" of the original scene. which can be used for recognition
and navigation (together with interpolated depth. motion, texture. and color
fields, if neeled).

I



2.2 HardwareI
2.2.1 The Eye-Head System

Because of the variety of vi-al information pructe-, ,i Ibv the Vision Mac ine.
a _,oneral piirp nae ima 't e.ic e i a r I. T i- ,le i the, Eve- Heal

The Eye-Head t em c' atiii s t wo C CD 'ameras "'eves- i mountedt on
a variable-attitr ile platfirm i'ea " ,. The apparart, alloxv, rthe *alleraZ t.)
Ibe ioved as a unit. azzalois, to heal moveiemir. It also allows tile lines, of
sizit of the cameras to he p,,inte, independently. anal,,golts to ev liloVeient.

Each camera is eqtipped with a motorized zoom lens , F1.4. focal length ftrom
12.5 to 7.mm). allowing control of tile iris. focis-. and focal lengri by ie Os

computer (currently a Synbolics 3600 Lisp Machine,. Other hardware allows
for repeatable calibration f the entire apparatus.

Because of the size and weigit of the rnotorize( le 'Ise. it w,,old be un-
practical to achieve eve moveient by pointing tile camera lens assemblies
directly. Instead. each as.enilbly is mounted rigidly on the head. with eve

movement achieved indirectly. In front of each camera lens is a pair of front
surface mirrors, each of which can be pivoted by a galvanometer also mounted
rigidly on the head. The mirrors are positioned to provide two degrees of free-

doni in aiming the cameras. At the expense of a more complicated imaing
geometry. this allows for a simpler and faster control system for the eves.

The head is attached to its mount via a spherical joint, allowing head
rotation about two orthogonal axes ipan and tilt). Each axis is driven by a
stepper motor coupled to the drive shaft through a harmonic drive. The latter

provides a large gear ratio in conjunction with very little mechanical backlash.
Under control of the stepper motors. the head can be panned 180 degrees from
left to right and tilted 90 degrees (from vertical-down to horizontal). Each of
the stepper motors is provided with an optical shaft encoder for shaft position

feedback (a closed-loop control scheme is employed for the stepper motors).

The shaft encoders also provide an itdex pulse ione per revolution) which is
used for joint calibration in conjunction with mechanical limit switches. The
latter also protect the head from damage due to excessive travel.

The overall control system for the Eye-Head system is distributed over
a nucro-processor network (UNET) developed at tile MIT Al Lab for the

control of vision robotics hardware. The UNET is a "'multi-drop" network
supporting up to 32 microcomputers under the control of a single host. The
micros normally function as network slaves, with the host acting as the master.

I
I
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[ii t ils nmode, the uickros --l- peak wheni p-ken to." epJdi uVr.i
nlet work .perat ioti, eirlher 1,v rec-ivin i jt.rimatHd omjjjd*r* ''~

Ih t'rransnuit tiug informnat ion 'uich as status i)r results) Associate'i itli each
::ilkrt) )JI rhe UNET isa iocal 16-bit bii ( UBUS 1. which iu, totallv iide~r rthe

cUt rrot 4 the mie .Peripheral 'I vices uichm as niotor dIrivers. ztlvaIHinlet er

:n vet5 . ; l ni p x i~eit 11 ill. "Itlar. 'E- PIVX \- L. r" name a few,caitn .'ac

I ~J1 .Each of rhtee zicros ha ain assort ment o f IUB US peripheral- 'iiler
Cs cwrol Bv nakl hese peripherals -iitficl'itlv y wru.eah1ic''

The ConncinMcie 0)i oeru ie ga tieprtull eac hi ir,

Ihnei dtescribed in the appendices (Introduction to Data Level Paralle[L.Tin.
ThinkIng Mac hines~ TechnIcal Report 86.14). We now have a 16K CMI and a
_'K C%12 with floating point hardware. Many vision problems must be Solved
by a combination of rommnunication modes on the Connection Machine. The
design of these algorithms takes advantage of the underlying architecture ofI the machine in novel ways. There are several common elemientary ope-atmons
uised in this discussion of parallel algorithmis: routing operations. sraiinig.
and distance doubling.

Routing

Memory in the Connection Machine is associated with processors. Lo-U cal memory can be accessed rapidly. Memory of processors nearby in the
NEWS network can be accessed bv passing it through the processors on the
path between the source and the destination. At present. NEWS accesses in
the machine are made in the samle direction for Al processors. The router
on1 the Connection Mlachine provides parallel reads and writes amiong pro-
cessor iiiemiory at arbitrary distances and with arbitrary patterns. It uses a
packet -swi tched message routing scheme to direct nmessages along the hyper-
cuibe connections to their destinations. This powerful communication mode

can be used to reconfigure completely, in one parallel write operation taking
one router cycle, a field of information in the machine. The Connection Ma-
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-I ince ilppjie Mu(tlk) : !t iIn iat mn prucehsors (call readl fromn or write,

rc he te . t in 'Itlt -i nct' e intorr refereiice!, *an catie -igni ii-

calelav.. we iii il-iuah' lv it'ie excluiive readi ant'i exclusive write

i i-rue , i WVe wxill is 1tiil v u- t : vmore tla Itaitue pr oce- or to ace tht-I ::te~ti, rv tiitorr --- )r st .* he Thle C(im~iect it n Mac hine, Canl Coi1-

it i1)11i5i- -itU l'ls al it- nat-i rI.tiih gsji'41al AND.

R .- :~i~t't t. nt::;xnvtt or :tuinlnII.

Tile 'a ttmntti- iRK I97cit be uisedi to) intplfv and- peedl

'p a i 2.t*r tamts ITii ; ike 4ivlra~ i the livperclibe tuneI Itll 1IIInerlv1Ing he rL w ter. aiit ,i 'n I)e uised to) distri biiue valuies ailvngm thle-

2)ro'e~~rsantIto ggr~~ate vlue usig asocative ,p~erat,)rs;. Formnally. thle
I) )l 01 411 t )v i e 11tive operato -. wih de tt ) anl n

tOperatiti takes a !tinarv assts'aieoeao[ ih tett ) n i
tierd 7at . a . t2 1ani retuirns the "'Ot tiji t2,(tl . ltj t21l

0 i, This operationu i -(netintes referred to as the data indtepe tiletI, r ru'ix o p, r, I to 7 Kru7 -kal et al.. 5. Binarv aSs ociative toperators zincle
P )U t ? 1 X1 t V I it Iut(

1  
1) 1 L';.

The a)ir -cai toperat itons ! p11- 3:11 n. mnae.3can. oin f- 3 daf, and cop !i-Ac an

isa miile-lieuitet I in nucr tocle. aiiul takt: about the santie amount of timne as

;ticotting 'vcle. The t'opy-ran operation takes a value at the first processor

andi distnrllites; it til the other proce ~sors. These 3can operations can take
4;mret it.;~ that divide thle processor olrdering into segments. The beginning

4 each e'nne:.,t Is markedl bY a processor whose s egment bit is set. aitdi the

-C'Ml Operatio~n.- tart over againi at thle beginning of each segment.
The wan operations also work usinig the NEWS addressing schemie. termledI

yr111-4cdilfl. These compute the silim and quickly find thle miaximum., copy. or

numiiber valuies along rows or columins of the NEWS grid. For example. for

elach pixel yrid. 5rans can 1.,e used to find thle suin of a square region with widthI 2mn- I i'enteredl at thle pixel. This sumn is romputed by tile following steps.

Firs;t. a p1tL3.3can accumulates partial buns for all pixels along thle rows. Each

pixel then gets the result of the scan from the processor m in front of it and rrn

Ibelunid it: the difference of these two values represents the sum, for each pixel.

(,f its neighborhood along tile row. WVe now execuite the same calculation onI thle cillumins. resulting in the -nrum. for each pixel, of the elements in its square.
Tite %viltl process, only reursa few Aifan and routinig operationis. and runs

in timte in ltepeiident of t ite itize tof 172. The sumlutation operations are glenerally

1useful to accumlulate local support in many of our algorithmis, such as stereo
and motion.



IDz*itance oiln
Another important prinurtive operation is 11.5tance doubling Wyllie. 197,9:

Lim. i9S6 .which can be used to -oin,,ute -he effect oi anyv binarv, associative

on~aio.as in 3can. on processors linkeci in a list or a ring For example.

lising 7zax. d~trancte io.rbling can find the extrenium of a tieid contained iI *he proc so; rs. Usiinz niessaize-oassingz on 'Ile rotrmyTC9i~.ln can
propazate -he eXTreme value toall processzors "In tile ring, of A' processors :n

0' lozNsns Eacqh sre ioves -wo ,n~i operatin S. Typicallv, -he au

tbe :1naxi~uzei is -Iiosen -o e the hlvpercabe-address. At -erin-arion. eac.1

D)roce-sor in tile :hug knows the label oi neiaxiiuniii processor in ihe n.I ereat'er 'ernieui he Principal Drocessjor. Thi11s labeis aLil connected Drocessors
'Il, I U I nd nomlinates a processor as : epresentative bor ?lhe -antire -et

o)f 7onniectedi processors. At -hie s;ame time. the distance froml -he PrznC1.010I "oc e uor ' an oe computed tn eac Iroe-;or. Figure 4 shows -hie propaganion

,)t v.aluies :n a rn g ot Ienitr processors. Each Processor initiallyv at s.tep 1).fl as lhe a.ddress of 'he next :Droc&- sor in -,he rinig, and a %-a ue which is to be
:naix~nnuzed. At tHe *ernlnnatiun onf thle step. a processor 'Knows the addresses

o)f processors 2' - I away and the miaXImumn of all values withlini 2'- processorsU away. In the example, the mnaximum value Aas been propagated to all eight
processors in loz 3 :3 teps.

2.3 Early Vision Algorithms and their Parallel Implementation

I We have described thle early vision algorithms and their implementation in a

previous report (see appendices. The MIT Vi.3ion Machine. Proceedings of the

Image Understanding, Workshop. 1988). Although we have doze substantial
work to improve some of these algorithms i miost notably stereo), we will not
diescribe this work here-, details can. be found in the appended papers. We will

describ, e.however, two new algorithms for color and texture.

fl 2.3.1 Color

Thle color algorithm that we niave implemented is a very preliminary version

of a mnodule that should find the boundaries in the surface spectral reflectance
func ion. that is. iiscontinui ties in the surface color. The algorithm rIeso
-he idea of effective .Zirntnarion and on the singi.. 3ource assumption. both

introduced by Huribert and Pomgo see Povgmo et.al.. 1985;.
The single source assumption states that the illumination may be sepa-I rated into two components. one dependent only on wavelength and one de-

pendent only on spatial coordinates, and generally holds for illumination from
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Ha sing llit source. It allows Its to write thle Image irradianice 1 (.u-n for a
Lambertian world as

Ih"r JIs the inmaie irradiance in the 01i - pectr l channiel ii rf (I. gremn. blv 1,

d t. (1is The surtace speci ral rtlec tanlce i r ile . .ind Ef~r. i' ) is t he effec-

r ill 1,i1ii1111r iou which absorbs thet .patlal variar b 'i> 'fi hv illuin una and,

he lhdn ue to thie 3D shape o)f suirfacps 1 k,!, is a c n'atit for each chianniel
n11( 'Ieuenlds uniV oil the liimiiianri ). A Simple ~e1ei ti nalzorjtiii is thenfl hr ained b v considerinig rte qar'n

H l 2 r /0r 1.

I r -g -. krpr r9 )

A which chang-es only when p" or p3 or both change. Thus H, wh-ich ipiece-

Wise cionstanit, has discont inities that itiark changes in the surface albedoU indep.'mleiitiv of chian.ges in the effective illununatiOnl.

Thie quantity Hr: x, q iis dlefinied almost everywhere. but is typically n~ois.

To counter rte effect of rnoise, ire exploit the prior information that H should

,be piekeWise constant with discontinuities that are themselves continuous.

non-intersecting lines. As we will discuss later. this restoration step is doneI using a MRF model. This algorithmn works only uinder the r estrictive assump-
tion that specular reflections can be neglected. Huribert 1988' discusses InI
inure dletail the scheme outlined here and how it can be extended to nmore
g1eneral conditions.

I 2.3.2 Texture

The texture algorithm- is a greatly simplified parallel version of the texture al-
gorithin developed by Voorhees and Pog~o 1987'. Texture is a scalar measure
computed by summation of texton densities over small regions surrounding ev-Iery point. Di scontin tii ties in this measure can correspond to occlusion bound-
aries. or to orientation discontintilties, which cause foreshortening. Textons
are computed in the im,_. - by s<mple approximation to the miethods presentedUin Voorhees and Poiz. - JS87. For this example, the textons are restricted
to bo-kergoswto regard to orientation selection.flTO com-1pute textons imiage is first filtered by a Laplacian of Gaus-
siian filter at several ir-ferent scales. The smallest scale selects the textural
elements. The Laplacian of Gaussian image is then thresholded at a non-zero

value to find the regions which comprise the blobs identified by the textons.

The resuilt is a binary im-age with non-zero values only in the areas of the
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Mlobs. A simple stiminat 11)1 comihutrlte .1,a-a I V 4 blh b-. tile 1)1i' 4t otrle

- iuiiiiatioti regi1oti ct'ver d ) I [I *i .I I."1 area ' I I.I. )h fI I I I _-car I 1)I I It.I ~This operation effec tive1tv neasuires the 4 hlii ~ obs at th lehe -Cale. while
iiI:() coll itji thle presenice 4I L alj -' 41 !.%- 1ar'_e WiOji1eesat thle

II ,hmfl(arles .)f textilrreil rei_,ions. C it trash 1wii lares appear as I in the

Laplacian 4t Gais~ian Tuni te runye ir -tfect, w(e i>e hoL ,alii 4t

G:1,au llni~ig at a irit r- .' L -;t1I>0'l 1,V thet t,'Xriij't at tile

huie s-cale (Io not appear at r iii, are o~' :lt tli ho Ur rast ii~lre

ais well as, all other idlol 1 at Clar 1o als ean hs0lreVo ma-
ten r! e ,Ile bla d)t i h " r h ~n- :-r o froIll itip :ie 'e'aleI tmag4e. Thet niiia -;~i InMI. Whet her'.vi t ii a 'iuuujet 'Call 'pera tia i (,r Gal m -ia mu

rIlterin2. caali deterineii tle 141 hlI enl-i t v at aci hue (7cale qlv. Thl',I- '111rcX -

amlple in which multiple spatial sclsare li t ile pres;ent Iiipltiietat'01 i1

f th li ,i Machinle.

2.4 The Integration Stage and NIRF

I ~Whereas it is reasonable to assumle that Cohibitting thle evidenlce prlite v

muiltiple cues. for example. edge lietec tion, terte ), anld color, phi 1111 t l ie aI iiiMore reliable map of rhe -ozrfaces, than muv -iuecue alone, it is niot I )lviolis
how this Integration -anl be accoiiplishAe(l. The various physical processes

that contrib~ute to liiage formiation. b-ufacipthi. sulrfaice a ri brr''I Lainberilan and specuilar rompoiltu ) . lliinlnmi ai. are coulpled~ to tile imag1"e

diata, and therefore to) each other, through thet limaging equation. The coulplinig

is, however. difficult to exploit Ii a robust inanhier -Ince it dependts critically on

the reflectance andl imiaging inodels. We arizue that the coupling of the iiniage

dIata to the surface and illuminiation p~roperties is of a more (Inaltative andIrobuist sort at locations in which iage brighlt ie-s chang-es sharply anld suirface
properties are discontinuous, in short, at edges,. The Intuitive reason for this is
that at discontinuities. the coupling between different physical processes andU thle image data is robust and qualitative. Fur example. a depth (1i5('ohtintlitvl

lisually originates a brightness edIge in the liiage. and a miotion hounlarvU often corresponds to a depth dlisconltinuitY 1 and( a brightness, edge IIn thle
imiage. This view -oiggests restoring thle dlata provided by early mnodules or

hie folloing, linteg.ratin schleme. The results, provided by stereo. motioni. aiidI other visual cuies are typically noisy and sparse. W~e c7an improve theml bY
exploiting the fact that they should be smnooth, or even piecewvise constant

fas In the case of the albedo). between dliscontinuities. We call exploit ai

priori Information abouit generic properties of the discontinui ties themselves.

for Instance. that thiey are iisually contlinuous andl non-intersecting.



The idlea, then. isto dietect II, t iiure, inl each cue. oichi as depthi.
-IrIIu aneolizv %vith tlie aP PrOXlli;tI- ii 4h pri at :1 Thle i lo- c t ,il --f

* jIC~l in es iaded by iriftrma),t*, mu n thle preleuce anld tvpt. ofdisconrjnu

t) tile brqnt ie~ eIes InI thle 1image.

N ,t ice .11a. relhable tot oct pii 4 uscut lt ties 1 cr iical for a it iN

rc. I I11 I rilce ir-c, nitliult ' e are i r' en t "it, mo( st ihiip( )rt anlt I,((*at'( )is in a ce :

Ylpt h dtisc lit inuit ies, tor examrple. ii(srriallv c' )rreq,,oid, tor tilt b orndaries of

All "bject ,r anl ob~ject part. Tile A ea 1s t hizi t,) coutple hlifferenit cut- lrrourtzhiI heir ,liseouit iu ties anld to iist irif rurat i fr oni -everal -iet,- lullt ant-wi"v
to help refine thle initial estinathiun of hsc -oitirtts. wlucii ;ire t vpIcallv p s

aid sparse.

How call this be ionie" We have cipt),eu to use the nachiiery of Markov
Ranldomi Fields (MRF L initil 1,70e~edtr limagze proct-s,.mrig by Genan

andl Cenian 193S4 . This technique andJ ouir intetgration schienie are descn bed
Ii let ail Ii rile appendled papers.

I A few dlisclaimiers are Ii order at this p~oinit. WXe have chosen to use NJRF
mtodels because of their generality ;1nd1 the retical at tractrverress. This does
not Imply that stochastic algorithmsi must he used. For example, Ii the cases
in which the NIRF model reduces to standard reg-ularizatron Marroquin et .al..
1987 and the data are Qgiven ofl a regular grid. the MRF formulation leadls

not onilv to a purelY deternullnistic algorithin but also to a conivolution fiter.

We are now begiining to define deterministic algor'ihms that are either
eqjuivalent to a MRF formulation or are a good approximation to the stochastic
Monte Carlo algorithrins. M-,ore specifically. we expect that the probabilistic

formulation of a \IRF is in a sense too general, and therefore too inefficient.I Remiember that MIRF niodels are qite gleneral; for example, regularization
canl be revarded from a probabilistic point of view as an inistance of a MRF.

* 2.5 The Recognition Stage

The ouitput of tile integration stague provides a set (if edges labeled in ternis of
physical disco t inui ties of the su~rface properties. These are a good iniput to
model-based recognition algorithms. We have interfaced the integration stageUf othe Vision Machine as implemented so far with the Cass algorithmi. We have
used only (tiscont inui ties for recognition; we plan to also use the information
provided by the MRFs about the surface properties betwveent discontinui ties.
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2.6 Results

IWe have iised the Vision Machinle to complitt e a 'cartoonl -Of vi, Ille .!Cf'!les

0 nItainlinz a varnet it of e' :tic h nioel pinzie,> -)md )icf cee This.

ciriiOf (1iZcoit 1i11u tie-; iia been1 11-0 to reco-ziize object -; 4 which noI

wore Tula do.The *.v Ii o ~v~t ,in *,vor: inl parallel ,it the C ulilect " in

M a' inle. Exanples 4f heit ipiit 4'lit, lit :Iain~t g re h1okvn In licU a)penledct papters. \\c niave ' v1 Vtthhe wir results ()n reo gniitl 01.

2.7 A VLSI Visioni Machiine

(Our \ Izsion Machine col t ia~to~tlv 14 pecializ,, o 4tware ruingl Onl a'It

toral pupose- computer. the Connect;in M'achline. This Is a 4ood syistem for
rne prfsent st age of experimientatil In. and levei-oTpmenIt. .Now that we have

porfected and tested tile algorithmis and the o)vera"ll systemn it makes seniseUto compile the software "in z.licoxn i )rder to produice a faster. cheaper. anid

smllr Ision Maclime. WXe are pre~entlY tatn a projecit with, Elec.trical

Einineering taciltv to uie anialog. and ligital VLSI technology-' to dlevelop somie

initial chips as a first step toward this g-oal.



3. OTHER RECOGNITION WORK ON THE 1

CONNECTION MACHINE

Wv ilIIe LIit Ilia,) Iiif) Ietnente( t L JeC r '11( )( [l 1(1111~ It I 1 I I( 1 rC(0Lmti()1 U SChe IIe

u~nzthe Mahn ujue to) 'n Nlarlulle Ilibrarv >-ea rchI. The I1(,tmainl Was

~.1 %V wrll.. 2l miiO(r1i lrril~ju I ul'ts~ whicl aIre nlut

easl[v ltescrill it~ ~r il t echiji 'jit Th i le ; i ip plicat ion f(-r

sutcii a vison ~t jis laiiiark rc '~fit'r1 ili;tlHra ati.

I j~~ualit ativ~e slbiiet te 4rapli. -,illl( )1 j-e teat 1tre, inlvariant t,) alha~e

ill view point. ascIi8 poits 4t luaxiiumi crrvat ilre. are ii.(e I to p r rlie

ilhouettes into c [junks, whichi are r liu yucrb dli rative-v. Du~rinzg model

aquisit ion. the %-rtemu direc tel a imolile camlera n )olint et -it the end( 4 a

robot mn-ipulator) to) take new image hoill views with iilaxinmim un mcertaint vIonl the frontier 4t the partiallY -onst ruc ted- mlodel. The resulting, mo(lel., are

organiized oil a qualitative Gla:,sian sphiere. Dttrrijg1MC lilhiii 'f all 111nzil

o object, all previoustv built imdels are mlatchedi slinut anleously on thle Conniiec-

tionl Machine. Each nod(e lin cachi model graphi is assignedl a unique p~rocessor.

Each nodle tries ro) match itsel f again ,t features in the Input dlescriptionl and~U propagates miatcthing rmost ralits to its nighbors in its own model graph.
Thus matching happens lin boundi~ed time regardless of the size of the lhbrar.

up to the capacitY 4f the C\NI
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I 4. OTHER ARCHITECTURES

*~~ NIt:tr khas tbcuse,u thie Connection Nlac'Jue. a

ir ti> :ef tr wiiou tihlii a ntavig'ation t a k. Thlank, tot) tie ini-lholise

lhe tilc-2 rai'liel 4rirclr ,tiWj. C-1, r tV .Lii~II

rIIIr I I't e T s e( I IW1 Brook: .

4. 1 Architectures for Robot Navigation

P v- i iv.*we had lw-olin ' w-)k ii~ig tie si -simpr i n arc lutec 11ire fr ia%--

i--arlol. In which percept ion ivas carriedi out bv )tlihr prcse.Durling tihe

lat o~r eaLt, appll'Siet II sub, im ion irect lY to I itu~iiug a %vI,,lal percept il)*

-~.r~nf'r a mob0ile robot.

Thie -iibsuftiiijroi archiltect lire is a niatiuraliv parallel -systeml which uses

iii ~e uasingbet weenl , 11111p[e c-omputational elemnents to localizedeiioS
to [)el~Ci5Cv the relevant aspects of thle world. We extended this architecture
by. ai'hnig- visuial patlhwaYs where image data could be sent between the corni-

pt ational elements. The comiputational elements were augmentedl to includeI array processing primitives.

Two implement at ions of this -architecture were bilt. One used S-bit iin-

(-roprocessors to Lo real-t ime ).'ect recognition Ii depth Iimages. Thle outputs

were ulsted to direct a robot with anl onboard arm to locate and retrieve known

objects In a dynamnicaly changing cluttered environment. The other iniple-I uentati on simulated a parallel machine on a Lisp Machinme. and did real-time

p)rocessing of five frames per second fronm a standard black and white cam-

era. enabling the rob~ot to follow corridors and locate and follow slow inoving-

objects. The first test used a pipeline of simple S-bit microprocessors (6800s

with a cycle time of oriel milcrosecond to achieve real-time vision in depthI images.
The complete systemn including a laser light striper, a parallel processor.

and a manipulator mounted on a mobile robot. The light striper uses a stan-

(lard black and white CCD camera with anl appropriate filter. Odd interlaces
'veres 1iscarded to allow for stab~ilization of thle mechanical systemi, while each

eveniiiterlace, every one-thirtieth of a second. provided a horizontal scanlinle

of diparity. In this way, every 1.067 seconds a 32-high by 256-wide disparity

imiage was collected. As each scanine was collected, it was expanded to a kilo-I bte by the addition of three temporary bytes to each data byte. The imiage
Was rn.presentedI everywhere by these expanded scanllines. As each scanline
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wa- collected, it was piped into the first in a series ot iuicroprocessors. Each

itiicroprocessor had .SK of EPRONI. an, l 12"< 1)vte, 4,'cratc'h RAM ,nb,,ard.

A 2-Kbyte RAM associated. with each processor hold tile two most recent

-canlines of the image. The prwcessor. were connecr*, in a tree. rooted at

tile li it -triper. atmd every 33.3 nfullisec; os a scaniine 'f ,lata was shifted

hriti h~e -vsten il a ).5 ttdiiiseconki iwrst. This itt ,acli pri,c-or wirih

rilte : It :tb{nt thirty instr ucti,,n- per ii:.'ei ,,f ritt e t' ;t l 1,.Wit ae.

Tle recognition problemi is partitioned into a aiiunber of .iinple ,,pera-

tiolns oit rhe image. each of which was mapped to a proces-,or. Early in the

tree ',f prOCes5Otr t e operations were generic ,e.g. , I L i- .e I.ateIitt-
tion , blit towards the leaves of the tree. the operations were quite specific

li..~ape inatching for a -;pecific s-hapei. The imiplem~ented version usedi a

tree of processors six deep. giving a one-fifth second latency between comple-
i on ,t rite collection of the image and the parallel jut pitt from a set of leaf

nodes ,)f ,object identifications and localizations. The system has been used

to reliably locate and grasp target objects in cluttered dvnanically changing

ellvironnlettt s.

In the z-ecuiid test of this approach, a single black and white CCD camera
was ntited on a mobile robot base. The images were subsanipled down to

32 by 23. and a new image was taken every 0.2 seconds.

A reliable system for approaching and following moving objects was built
by first building a simple but unreliable system, then adding a second simple

and also potentially unreliable system, to make atl overall reliable system.

Once this initial reliable system had been built, it was easy to add on top of
it a few more computational modules and have it do a quite different task:

drive along corridors.

The simplest system compared successive images using pixel differences

an binarv thresholding to detect areas of motion. The program servoed the

robot base so that the centroid of this motion area was lined up in a particular
spot in the images. Servoing the base in this way causes the robot to chase the

(letected motion. This system is very unreliable due to noise in the images.
and the fact that as the robot moves, the whole image appears to be in motion

given the simple motion test used. The next piece to be added to the system
is a heterogeneous blob detector and a region colorer. The blobs are matched
to the motion region. and the one with the biggest overlap is used to compute

the centroid to be servoed towards. In addition, a binary image consisting of

just this blob is latched to replace the motion image for comparison in the
next iteration. The result is that now the system uses the motion detector to

provide a seed to be tracked over time. To improve the performance of the
system, a set of subsumption architecture finite state machines control the

U



hvstere.is of switching between ILib b and miotion niatc-iing. \Xheu t he roi)!t
1, chasing -an ob~)ect. i iav 1,,, 't fP r a few t',aine,. in wilichi case :il)')tiiI 41
is re-invoked to try to find a new t ar-get to cha e: the usuial out conic is that

he old target is dAetected attain. T, an r-xreriial ( sre.the robot toes not

appear to hesit ate at all: it ijs .41niplv puir~iing, a 11iolv1n1 o)bject. .A fw ire

-Ubsuiptin proceses take care 4 d pecial *- s Iich A, aCCI(tliitahlv1 1pursuing
a Wall and1L runninY ito it.I This visionl S vstrn worked in a comnplet clv ilnb r inc tiiredl nvIronieni t.

In most imiages t aken bv the robot. t here asa targeYt (bJect on a dlirtyv

L.-),r rerlec ting highligthts f ormni te ,verlak lh ~ Th-e - v-rein Wvas then

augmented further to carrv out a qu1ite dlifferent task. By taking a hioni-enoits
1*egmion .4rower andl feeding it into the network at the appropriate point. the

robot was made to pursue the floor in front )f it. effectively miaking. it wander

dlown corridors.

The conclusion we have reached is that thIe two architectilres -an be Coim-I plerunentary for navigation. The simple subsuniption architect ure can underlie
~'iinple reflexive behaviors of the insect tivpe. Fur tlu,, ye )phustlca ted tasks

involv-ing planned visual navigation and recognition. however. thle power of a

parallel supercomputer is barely sutficient. given the cojmplexit-y ()f thie tasks.



5. CONCLUSIONS AND FUTURE RESEARCH 1

)iur pro 'jec .ta parallel is Ion ri\ I ac Iiiie. IhIas the Lz itI1 4, lee Io lpin- a -vsiteiii

t )r Mtt egrawi.n4 e-arlyv vision niao hies -,111 -Omlplii(_,n a robiu- t lesc riptionu ot lieI * .1 .~' i nur :e-4 the -urtace-s ali l t 1 iir phiv,1ual pri t tthat canl be L':ed

~ r :e 21i ,)II ril-k,. ]Diu- iv2 l - 1;i,-, v.ar, ''' :1i ner irt te tIl)Ilt3~~ i ir..ro stage *.v-ittU a )a rallel altll e r'*gnti gorithUni.

yele,-rI~dearlier. the Vl i-jon Mac hine svs-t eii lilteg rate several vision

i. t ~ cii~'yehighi pe-rt')rntiLCi8 in ii ti fct iretl n i alilY for

Ltm gui it uI tasks. It iS al,;, tU ' rt -. our t ittetia )r0,re-s in vu,10on

~ n Urs. heir parallel iiIleflielt at"0o and their integration. The Vision1

.Lt;,rlie at p)rezent~s colnl,ts ()t a mnovable two-camnera E ve-He-ad sv~m- thle

ilt icrice -~ and a SIK CM2. %N-, are limproving,. the parallel early visionl

:a-LgorltitInns which comipute edg deect ion, stereo. niiotu n. texture anid -urfaceI ,Att) in cseto real-time. The inlte,4ratuoli st age is 1)ase(l ,iit the technique of
C01ipled Markov Random FieldI uti0els-; .and leadis to a m'arto, tn-like miap 4 the

liscntiuities in the scene. with a partial lab~elling, of thle brightness edgzes InI

tennis of their physical origin. In the last year. we have interfaced the output

-)t our integratio n stage with a parallel mnodel-basedl reco-nition algorithUrn.

The Vision 2dachiiie will evolve in several parallel directions:

*Improvemient. and extensions of its early modules.

SImprovement of thle integ-ration and recogitiIn stag-es (recognition i

discus-sed later).

* (:-e of thle eye-head systeml in an active miode (luring recognition task byI developing, appropriate gaze strategies,

* Use of the results of the integration stage in order to improve the op-I eration of early mnodules such as Stereo and motion bY feedinig back the
preliminary computation of the d-iscontintuites.

Two goals will occupy most of our attention. The first one is the dlevel-

(opment of the overall organization of the Vision Machine. The systemn can

be seen as an imiplementation of the inverse optics paradigm: it attemipts

to extract surface properties fromn the integration of imlage cuies. It miust be

,-r.sed[ that we never intended this framework to imply that precise surfaceI prperties such as dense. high resolution depth maps. must be dlelivered by
the systeni. This extreme 1iterpretation of inverse optics seems to be com-

mon)r. but was not the motivation of our project. which originally started wvithI

the name Coarse Vision Machine to emphasize the importance of computing

qualitative. as opposed to very precise. properties of the environment.



Our second mialin goali mthe Vision machine project will be M.acine
L.;run.Ini part ic'-ilar. 'ye have he#.vti to xplre 11uple !earijut, an' -i-U :nr~ltin techniqutes for vi-ioi t asks. W\e have lwuce(ied in svteiiga rc dor

alt4"ri hin fromi exan1iplt- Huiribert and Po,,4io. IO'SS. and, ill developiii,4 a

-t-ia(pi t pefom ul>iprv1 e~llearnling Sain"tr, I9,sS of other s illiple
-i n alzori t lii ' nh 'tiiiple versi mns oftl teI ro1Inpt ation iof te : t 'o :i nil

.t uf"r,1 :t rk,,). -,et nlillus. a1nd( clscllet h w l' inlap

'll inheorlv ,iicn as zplines. Baesian techimoiies and Mlarkov Random Field

:i10"ttis. \\e have idlentrfhel -oie rominion properties of all these appri-achies
;id m)le 4 the couii 'in hlmit ations. such as samnple compllexity. As a co ie-

[ne-ve w now" rwhleve that wve canl leverage our expertise in approxunat:I ill

H'hiiies fur he probileml o~f learning in machine vision. Our ftu tre tleoSre-rical and( computational stuidies will examine available learning techiiiq'ie-;.
'heir properie , anii limitrtonis and develop new ones for thle tasks- ,f , trlv

vji n for thie itter titn age and for object recognition. Thle ailrihs

'll 1)e restedt with1 the Vis-ion Machine system and eventually inicorpi'ratedi
into it. We will also payv attention to parallel network implement ations oif

these algoritimii for this !tbgoal wve will be able to leverage the work we

are now doing inl developing, analog VLSI networks for several of the comi-

p~onents of the Vision Machine. Towards the goal of achieving much hii-4herU flexibility Ii thle Vision M.achine we propose to explore (a) the synthiesis of
vision algorithnms from a set of instances and (b) the refinement and tuniing

O~f preprogrammined algorithms, such as edge detection, texture discrimination.

motion, color and calibration for stereo. We will also develope techiniques

to estimate parameters of' the integration stage. Much of our effort will be

focused1 on thle new iclieme for visual recognition of 3D objects. whose key

component is the automatic learning of a large database of models. We alim

to develop a prototype of a flexible vision system that can. in a limlitedl way,

learni from experience.

In the following, we ouAtline some of the other directions of future devel-

opment.

9 Labeling the physical origin of edges: conmputing qualitative sraeat-

trib~utes.

* Saliency. grouping. and segmientation.

* T Junctions: their detection and use in grouping.

* A VLSI Vision Machine.

* Learning and paramneter estimation.
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CAMl Cam image overlayed with discontinuies in texture (yellow),
motoi (orange), and to det (green). The discontnuies ae computed from

Markov random fields. The union of the disconuities produces a "cartoon" which
- is used by a parallel recognition algorithm. See page 436. [T. Pogio et al., Artificial

Intelligen Laboratory, Mauachuem Institute of Technology, Cambridge, MA
02139]
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Parallel Integration of Vision Modules image dat (i particular, to the sharp

_changes of brighmess in the image) through
the discontinuies in the physical propertes

T. POGGIO, E. B. GAMBLE, J. J. LrnT E of the surfaces (see Fig. 1) [for early work in
this direction, see (I )]. The final goal of

Computer algorithms have been developed for several early vision processes, such as this approach is to use information from
edge detection, stereopus, motion, texture, and color, that give separate cua to the several cues simultaneously to refine the
distance from the viewer of three-dimemkial surfaces, the shape, and their material initial estimation of surface discontnuites.
properties. Not surprisingy, biological viso system s U greatly outperform comput- In this report we will describe a first step in
er vision programs. One of the keys to the reliability, flexibility, and robustnes of this direction that combines brightness
biokga vision systems is their ability to integrate sveral visual cues. A computation, edges with discontinwties in each of the
al tednique for integrating diffivent visual cues hu now been developed and modules separately.
implemented with encouraging results on a parallel supercomputer. How can this be done? We have chosen to

use the machinery of Markov random fieldsA LTHOIGH rr Is 3.ASONABLE THAT uities of the physical properties of surfaces is (MRFs), initially suggsted for image pro-

/A combining the evidence provided by critical for a vision system, since discontinui- cesing by Geman and Geman (12) [for
A JiL k ulople visual cues-for example, ties are often the most important locations alternative approaches see (13-16)]. Consid-
edge detection, stereo, and color-should in a scene: depth discontinuities, for exam- er the prototypical problem of approximat-
provide a morelreiable map of the objects in pie, normally correspond to the boundaries ing a surface (f) given sparse and noisy dataU a visual scene than any single cue alone, it is of an object. Thus, the output of each vision (depth data), on a regular two-dimensional
not obvious how to accomplisi this integra- module has to be smoothed and interpolat- lattice of sites (Fig. 2). We firt define the
non. One of the most important constraint ed (that is, "filled-in"), since it is noisy and prior probability of the class of surfaces in
for recovering surface properties from each often sparse; at the same time discontinui- which we are interested. The probability of a
of the individual cues is that the physical ties must be detected. certain depth at any given site in the lattice
processes underlying image formation, such Discontinuities can also be used effective- depends only upon neighboring sites (the
as depth, orientation, and reflectance of the ly to fuse information between diernmt Markov property). Because of the Clifford-
surfaces, change slowly in space (adjacent visual cues (4-7) and the image data [see Hammersley theorem, the prior probability
points on a surface are not at random also (8-10)]. For instance, a depth disconti- has the Gibbs form:
depths, for instance). Standard regulariza- nuity usualy produces a sharp change of
non (1-3), on which many examples of the brighes in the image (usually called a P(f) (1')
early vision algonthm are based, captures brightness edge); and a motion boundary Z
those snoothness properties well. The phys- often corresponds to a depth discontinuity where Z is a normalization constant, T is a
ical properties of surfaces, however, are (and a brightness edge) in the image. The
smooth almost everywhere, but not at dis- idea is thus to couple different cues--stereo, A.kW 1nmU4Mm Laor, mv, Muhuxm Inm..
continties. Reliable detection of disconon- motion, texture, color, and motion---to the tum of T=hnoio, Cambndp, MA 02139.
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THE MIT VISION MACHINE

T. Poggio, J. Little, E. Gamble, W. Gillett, D. Geiger
D. Weinshall, M. Villalba, N. Larson, T. Cas, H. BWilthoff,
M. Drumheller, P. Oppenheimer, W. Yang, and A. Hurlbert

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT visual cues. For this reason we are developing a Vision
Machine System to explore the issue of the integration of

We describe the MIT Vision Machine, our goals early vision module. The system also serves the pur-

and achievements to date. The Vision Machine is a pose of developing parallel vision algorithms since its

computer system that attempts to integrate several vi- main computational engine is a parallel supercomputer

non cues to achieve high performance in unstructured - the Connection Machine.

environments for the tasks of recognition and naviga- The idea behind the Vision Machine is that the

tion. It is also a teit-bed for our theoretical proess main goal of the integration stage is to compute a map of

in early vision algorithmsu, their parallel implementation the visible discontinuities in the scene, somewhat similar

and their integration. Th. Vision Machine consists of a to a c or a line-drwing. There are severa reaons
* movo..le two-camera Eye-Head system - the input device for this. Firstly, experience with existing model-based

- and a 16K Connection Machine - our main compu- recognition algorithms suggest that the critical problem

tational engine. We have developed and implemented in this type of recognition is to obtain a reasonably good
several parallel early vision algorithms which compute mn th e se in s o otusn a edn d

edge detection, stereo, motion, texture and surface color map of the scene in terms of features such as edges andm inclos torealtim. Th on corners. The map does not need to be perfect - human
n close to real-time. The integration stage is based on recognition works with noisy and occluded line draw-
the technique of coupled Markov Random Field moaels, ing - and of course it cannot be perfect. But it should
and leads to a cartoon-like map of the diseontinuitie be significantly cleaner than the typical map provided

in the scene, with a partial labeling of the brightness by an edge detector. Secondly, discontinuities of surface

edges in terms of their physical origin. We will inter- properties are the most important locations in a scene.

face the output of our integration stage with available Thirdly, we have argued (Poggio, 1986J that discontinu-
recognition algorithms. We are also beinning to study ities are ideal for integrating information from different

analog and hybrid VLSI implementations of the Vision v cues.
Machine main components.
MIt is also clear that there are several different ap-

proaches to the problem of how to integrate visual cues.

1. Introduction: The Project and Its Let us list some of the obvious possibilities:

Gol 1) There is no active integration of visual processes.
Their individual outputs are "integrated" at the

Computer vision has developed algorithms for sev- stage at which they are used, for example by a
eral early vision processes, such as edge detection, stere- navigation system. This is the approach advocated

opsis, motion, texture, and color, which give separate by Brooks [1987). While it makes sense for auto-
cues as to the distance from the viewer of three dimen- matic, insect-like, visuo-motor tasks such as track-E sional surfaces, their shape, and their material proper- ing a target or avoiding obstacles (e.g., the fly's

ties. Biological vision systems, however, greatly outper. visuo-motor system (Reichardt and Poggio, 1976]),
form computer vision programs. It is increasingly clear it seems quite unlikely for visual perception in theE that one of the keys to the reliability, flexibility and ro. wide sense.
bustnesu of biological vision systems in unconstrained
environments is their ability to integrate many different



2) The visual modules are so tightly coupled that it Finally, the goal of the Vision Machine project is no
is impossible to consider visual modules as sepa- less than the ultimate goal of vision research to build
rate, even in a first order approximation. This view a vision system that achieves human-level performance.
is unattractive on epistemological, engineering and
psychophysical grounds. 2. The Vision Machine System

3) The visual module are coupled to each other andt The iage mdatae a paoullel faston each ro The overall organization of the system is shown into the ima ge da ta in a pa r alel fash ion - each p ro -Fi u e 1 T h i m g s) a p r c s d t ro h in -cess represented as an array coupled to the arrays Figure 1. The image(s) are processed through inde-
associated with th other processes. This point of pendent algorithms or modules corresponding to differ-siedwi h the ther oc int o ent visual cues, in parallel. Edges are extracted using
view is in the tradition of Marr's 2 L.D 3k,-;Ch, and
especially of the "intrinsic images" of Barrow and Canny's edge detector. Stereo computes disparity 'ro=
Tenenbau [ . Our p tscheme is of this the left and right images. The motion module estimates
type, and exploits the machinery of Markov Ri an approximation to the optical flow from pairs of ir-doma Field (MRtF) modes ages in a time sequence. The texture module computes
SFmtexture attributes (such as density and orientation of

4) Integration of different vision modalities is taking textons (see Voorhees, 19871). The color algorithm pro-
place in a task-dependent way at specific locations vides an estimate of the spectral albedo of the surfaces,
- not over the whole image - and when it is needed independently of the effective illumination, that is, illu-
- therefore not at all times. This approach is rug- mination gradients and shading effects, as suggested by
gested by psychophysical data on visual attention Hurlbert and Poggio (see Poggio, 1983].
and by the idea of visual routines [Ullman, 1984; see
also Hurlbert and Poggio, 1986; Mahoney, 1987]. The measurements provided by the early vision

modules are typically noisy and possibly sparse (for
We are presently exploring the third of these ap- stereo and motion). They are smoothed and made dense

proaches. We believe that the last two approaches by exploiting known constraints within each process (for
are compatible with each other. In particular, visual instance, that disparity is smooth). This isa stage of ap-
routines may operate on maps of discontinuities such proximation and restoration of data, performed by using
as those delivered by the present Vision Machine, and a Markov Random Field model. Simultaneously, discon-

* therefore be located after a parallel, automatic integra- tinuities are found in each cue. Prior knowledge of the
tion stage. In real life, of course, it may be more a mat- behavior of discontinuities is exploited, for instance, the
ter of coexistence. We believe, in fact, that a control fact that they are continuous lines, not isolated points.I structure based on specific knowledge about the prop- Detection of discontinuities is aided by the information
erties of the various modules, the specific scene and the provided by brightness edges. Thus each cue - dispar-
specific task will be needed in a later version of the ity, optical flow, texture, and color - is coupled to the
Vision Machine to overview and control the MRF in- edges in brightness.
tegration stage itself and its parameter. It is Possible The full scheme involves finding the various types of
that the integration stage should be much more goal- physical discontinuities in the surfaces - depth dscon-
directed that what our present methods (MRF based) tiuitie (etreinal edgs nd blades), orientation di.-
allow. The main goal of our work is to find out whether continuities, specular edge, albed edges (or marki),I this is true. thadow edge - and coupling them with each other and

The Vision Machine project has a number of other back to the discontinuities in the visual cues, as illus-
goals. It provides a focu, for developing parallel vision trated in Figure 1. So far we have implemented only
algorithms and for studying how to organize a real-time the coupling of brightness edges to each of the cues pro-
vision system on a massively parallel supercomputer. It vided by the early algorithm. As we will discuss later,I attempts to change the usual paradigm of computer vi- the technique we used to approximate, to simultane-
sion research over the past years: choose a specific prob- ously detect discontinuities, and to couple the different
lem, for example stereo, find an algorithm, and test it processes, is based on MRF models. The output of the
in isolation. The Vision Machine allows us to develop system is a set of labeled discontinuities of the surfacesH and test an algorithm in the context of the other mod-around the viewer. In our implemented version of the
ules and the requirements of the overall visual task - system we And discontinuities in disparity, motion, tex-
above all visual recognition. For this reason, the project ture, and color. These discontinuities, taken together,H is more than an experiment in integration and parallel represent a "cartoon" of the original scene which can
processing. it is a laboratory for our theories and algo- be used for recognition and navigation (along with, if
rithms.H



focus, and focal length by the host computer (currently
Mops a Symbolics 3600 Lisp Machine). Other hardware allows,of

physical discontinuities for repeatable calibration of the entire apparatus.

--- Line lenses, it would be impractical to achieve eye move-
and ment by pointing the camera/lens assemblies directly.

Instead, each assembly is mounted rigidly on the head,

,. L iI ..i tL.... with eye movement achieved indirectly. In front of each
t t t camera lens is a pair of front surface mirrors (Figure

2b), each of which can be pivoted by a galvanometer

Salso mounted rigidly on the head. The mirrors are posi-
tioned to provide two degrees of freedom in aiming the

_cameras. At the expense of a more complicated imag-

ing geometry, this allows for a simpler and faster control
system for the eyes.

The head is attached to its mount via a spherical
Figure 1h Block Diagram of the Vision Machine joint, allowing head rotation about two orthogonal axes

(pan and tilt). Each axis is driven by a stepper motor
coupled to the drive shaft through a harmonic drive.

needed, interpolated depth, motion, texture and color The latter provides a large gear ratio in conjunction
fields). with very little mechanical backlash. Under control of

the stepper motors, the head can be panned 180 degrees
The plan of the paper is as follows. We will first from left to right, and tilted 90 degrees (from vertical-

- review the present hardware of the Vision Machine: the down to horizontal). Each of the stepper motors is pro-
Eye-Head system and the Connection Machine. We i & vided with an optical shaft encoder for shaft position
then describe in some detail each of the early vision - feedback (a closed-loop control scheme is employed for
gorithms that are presently running and are part of the the stepper motors). The shaft encoders also provide
system. After this, the integration stage will be d an index pulse (one per revolution) which is used for
cussed. We will analyze some results and illustrate the joint calibration in conjunction with mechanical limit
merits and the pitfalls of our present system. The last switches. The latter also protect the head from damageE chapter will discuss a real-time visual system and s e due to excessive travel
ideas on how to put the system into VLSI circuits ofanalog and digital typ. The overall control system for the Eye-Head system

is distributed over a miczo-pvocessor network (UNET)
3. Har r developed at the MIT Al Lab for the control of vi-

. Hsion/robotics hardware. The UNET is a "multi-drop"

3.1. The Eye-Head System network supporting up to 32 micros, under the control of
a single host. The micros normally function as network

Because of the variety of visual information pro- slaves, with the host acting as the master. In this m:.de
cessed by the Vision Machine, a general purpose image the micros only "speak when spoken to", responding to

* input device is required. Such a device is the Eye-Head various network operations either by receiving informa-
system. Here we discuss its current and future confgu- tion (command or otherwise) or by transmitting infor-
rations. mation (such as status or results). Associated with each

micro on the UNET is a local 16-bit bus (UBUS), which
3.1.1. The Present is totally under the control of the micro. Peripheral de-

vices such as motor drivers, galvanometer drivers, and
The Eye-Head system (Figure 2a) consists of two pulse width modulators (PWMs), to name a few, canI CCD cameras ("eyes") mounted on a variable-attitude be interfaced at this level.

platform ("head"). The apparatus allows the cameras
to be moved as a unit, analogous to head movement. It At present two micro-processors are instaled on
also allows the lines of sight of the cameras to be pointed the Eye-Head UNET: one for the galvanometer and one
independently, analogous to eye movement. Each cam- for both the motorized lenses and stepper motors. The
era is equipped with a motorized zoom lens (FI.4, focal processors currently employed are based on the Intel
length from 12.5 to 75mm), allowing control of the iri, 8051. Each of these micros has an assortment of UBUSI
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I C. Cameras

L. Lenses
M. Mrrors
G. Galvonometers (2 of 4)
S. Camera lines-of-sight

Figure 2: The Eye-Head System

I peripherals under its controL By making these periph- tation of vision algorithms. In implementing these algo-
erals sufficiently powerful, each micro's control task can rithms, several different models of using the Connection
remain simple and manageable. Code for the micros, Machine have emerged, since the machine provides sev-

I written in both assembly language and C, is facilitated eral different communication modes. The Connection

by a Lisp-based debugging environment. Machine implementation of algorithms can take advan-
tage of the underlying architecture of the machine in

3.1.2. The Future novel ways. We describe here several common, elemen-
tary operations which recur throughout the following

A single enhancement remains for the Eye-Head discussion of parallel algorithms.

system. Currently, a Symbolics Lisp Machine acts as
the host orocessor for the UNET. Soon an intermedi- 3.2.1. The Connection Machine
ate real-time processor will be placed between the Lisp
Machine and the UNET, acting as master of the latter. The CM-1 version of the Connection Machine

I The real-time processor (rderred to as the DSP, being (Hillis, 1985] is a paralel computing machine with be-
based on a Digital Signal Processor chip) will relieve the tween 16K and 64K processors, operating under a single

Lisp Machine of all the UNET protocol tasks, as well as instruction stream broadcast to all processors. It is a
various low-level, real-time control tasks for which the Single Instruction Multiple Data (SIMD) machine; all
Lisp Machine is ill-suited. Among the tasks envisioned processors execute the same control stream. Each pro-
for the DSP is optimal position estimation of moving cessor is a simple 1-bit processor, currently with 4K
targets from motion data. bits o memory. There are two modes of communica-

tion among the processor: firt, they ae connected
3.2. Our Computational Engine: The Connec- by a mesh into a 128 x 512 grid network (the NEWS
tion Machine network, so-called because the connections are in the

e Cfour cardinal directions), allowing rapid direct commu-
The Connection Machine is a powerfufl fine-grained nication between neighboring processors, and second,

parallel machine which has proven useful for implemen- the router, which allows messages to be sent from any

I
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processor to any other processor in the machine. The
processors in the Connection Machine can be envisioned
as being the vertices of a 16-dimensional hypercube (in procehor-nuaber = (0 1 2 3 4 5 6 7)
fact, it is a 12-dimensional hypercube; at each vertex of A n (5 1 3 4 3 9 2 6
the hypercube resides a chip containing 16 processors). Plus-Scan(A) - (5 6 9 13 15 25 27 33)I Each processor in the Connection Machine is identified Max-Scan(A) * (5 5 5 5 5 9 9 9)
by its hypercube address in the range 0... 65535, impos- Figure 3: Example of Pluan and Mar-Scan.
ing a linear order on the processors. This address de-E notes the destination of messages handled by the router.
Messages pass along the edges of the hypercube from can cause signifcant delay, we will usually only con-
source processors to destination processors. The Con- sider exclusive read, exclusive write instructions. We
nection Machine also has facilities for returning to the will usually not allow more than one processor to access
host machine the result of various operations on a field the memory of another processor at one time. The Con-
in all processors; it can return che global maximum, nection Machine can combine messages at a destination
minimum, sum, logical AND, and logical OR of the field, by various operations, such as logical AND, inclusive

To allow the machine to manipulate data structures OR, sumation, and maximum or minimum.

with more than 64K elements, the Connection Machine Scanning
supports virtual processors. A single physical proces- The scan operations [Blelloch, 1987] can be used

* sor can operate as a set of multiple virtual processors to simplify and speed up many algorithms. They di-
by serializing operations in time, and partitioning the rectly take advantage of the hypercube connections un-
memory of each processor. This is otherwise invisible to derlying the router, and can be used to distribdite valuesI the user. Connection Machine programs utilize Corn- among the processors and to aggregate values using as-
mon Lisp syntax, in a language called *Lisp, and am sociative operators. Formally, the scan operation takes
manipulated in the same fashion as Lisp programs. a binary associative operator 9, with identity 0, and
3.2.2. Powerful Primitive Operations an ordered set [ao,a 1 ... , . , and returns the set

y P o r lem [ao,(ao • a),... ,(ao ED a, s ... (D an.-)]. This oper-

Many vision problems must be solved by a corn- ation is sometimes referred to as the data independent
bination of communication modes on the Connection prefix operation [Kruskal et.al., 1985]. Binary associa-
Machine. The design of these algorithms takes advan- tive operators include minimum, maximum, and plus.
tage of the underlying architecture of the machine in Figure 3 shows scans using maximum and plus.
novel ways. There are several common, elementary op- The four scan operations plus-scan, max-scan, min-

* erations used in this discussion of parallel algorithms: scan and copy-scan are implemented in microcode and
routing operations, scanning and distance doubling, take about the same amount of time as a routing cycle.

Routing The copy-scan operation takes a value at the first pro-

Memory in the Connection Machine is associated cessor and distributes it to the other processors. These
scasm operations can take segment bits that divide thewith processors. Local memory can be accessed rapidlyk processor ordering into segments. The beginning of each

can be accessed by pnassi it throu the rScework segment is marked by a processor whose segment bit is
can be acesse bypwsngit throu g the pr io.Pcessors set, and the scan operations start over again at the be-

- on the path between the source and the destination.ofecsgmn(eeFur4)
At present, NEWS accesses in the machine are made sinning of each segment (see Figure 4).K in the same direction for all processors. The route r The scan operations also work using the NEWS ad-
on the Connection Machine provides parallel reads and dressing scheme, termed grid-scani. These compute the
writes among processor memory at arbitrary distances sum, and find the maciomum, copy, or number valuesH and with arbitrary patterns. It uses a packet-switched along rows or columns of the NEWS grid quickly.
message routing scheme to direct mamages along the For example, grid-scani can be used to find for each
hypercube connections to their destinations. This pow- pixel the sum of a square region with width 2m + 1 cen-K erful communication mode can be used to reconfigure tered at the pixel. This sum is computed using the
completely, in one parallel write operation taking one following steps. First, a pi.-scan accumulates partial
router cycle, a field of information in the machine. The sums for all pixels along the rows. Each pixel then gets
Connection Machine supplies instructions so that many the result of the scan from the processor m in front ofK processors can read from the same location or write to it and m behind it; the difference of these two values
the same location, but since these memory references represents the sum, for each pixel, of its neighborhood

I
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4.1. Edge Detection
processor-number - C0 1 2 3 4 5 6 7)
A - [5 1 3 4 3 9 2 6 Edge detection is a key first step in correctly identi-
SB (segment bit) = C1 0 1 0 0 0 1 01 fying physical changes. The apparently simple problem

IMax-Sca(A, SB) - [5 5 3 4 4 9 2 6] of measuring sharp brightness changes in the image has

Copy-Scan(A, SB) - CS 5 3 3 3 3 2 21 proven to be difficult. It is now clear that edge detection
Plus-Scan(A, SB) - CO 5 6 3 7 10 19 21 should be intended not simply as finding "edges" in the
Min-Scan(A, SB) - MX 5 1 3 3 3 3 2] images, an ill-defined concept in general, but as mea-

suring appropriate derivatives of the brightness data.

Figure 4: Examples of Segmented Scan Operations. This involves the task-dependent use of different two-
dimensional derivatives. In many cases, it is appropri-
ate to mark locations corresponding to appropriate crit-along the row. We now execute the same calculation on ical points of the derivative such as maxima or zeroes.

the columns, resulting in the sum, for each pixel, of the c pitofhedrviesuha axm rzre.
telmns, itssures.g iThe s oe p e ' o f tre In some cases, later algorithms based on these binaryelements in its square. The whole process only reciuires features - presence or absence of edges - may be equiv-I a few 3cans and routing operations, and runs in time fetrs-psncoraecefeds-mybeeuv
ineen.0 dt otsiz orTohe, srn in tipe alent, or very similar, to algorithms that directly use the
indepedenet of the size of m. The summation opera- continuous value of the derivatives. A case in point is
tions are generally usefuc to accumulate local support provided by our stereo and motion algorithms, to be de-
in many of our algorithms, such as stereo and motion. scribed later. As a consequence, one should not always

make a sharp distinction between edge-based and inten-

Distance Doubling sity based algorithms: the distinction is more blurred
and in some cass, it is almost a matter of implementa-

Another important primitive operation is distce tion.

doubling [WyUie, 1979; Lim, 19861, which can be used to In our current implementation of the Vision Ma-
compute the effect of any binary, associative operation, chine, we are using two different kinds of edges. The
as in scan, on processors linked in a list or a ring. For ex- first consists of zero-crossings in the Laplacian of the
ample, using na, doubling can find the extremum of a image filtered through an appropriate Gaussian. The

* field contained in the processors. Using message-passing second consists of the edges found by Canny's edge de-
on the router, doubling can propagate the extreme value tector. Zero-crossings can be used by our stereo and mo-
to all processors in the ring of N processors in O(logN) tion algorithms (though we have mainly used Canny's

* steps. Each step involves two send operations. Typ- edges at fine resolution). Canny's edges (at a coarser
ically, the value to be maximized is chosen to be the resolution) are input to the MRF integration scheme.
hypercube-addres.. At termination, each processor in
the ring knows the label of the maximum processor in Zero-Crossings
the ring, hereafter termed the principal processor. This Because the derivative operation is ill-posed, we
labels all connected processors uniquely and nominates need to filter the resultant data through an appropri-
a processor as the representative for the entire set of ate low-pass filter [Torre and Poggio, 19851. The filter

I connected processors. At the same time, the distance of choice (but not the only possibility!) is a Gaussian
from the principal can be computed in each processor. at a suitable spatial scale. An interesting, simple imple-
Figure 4 shows the propagation of values in a ring of mentation of Gaussian convolution relies on the bino-
eight processors. Each processor initially, at step 0, has mial approximation to the Gaussian distribution. This
the address of the next processor in the ring, and a value algorithm requires only integer addition, shifting, and
which is to be maximized. At the termination of the i"t local communication on the 2-D mesh, so it can be im-
step, a processor knows the addresses of processors 2+1 plemented on a simple 2-D mesh architecture (such as
away and the maximum of all values within 2'- pro- the NEWS network on the Connection Machine).
ressors away. In the example, the maximum value has
been propagated to all 8 processors in log 8 = 3 steps. The Laplacian of a Gaussian is often approximated

by the difference of Gaussians. The Laplacian of a Gaus-
sian can also be computed by convolution with a Gaus-4. Early Vision Algorithms and their sian followed by convolution with a discrete Laplacian;

Parallel Implementation we have implemented both on the Connection Machine.
To detect zero-crossings, the computation at each pixel
need only examine the sign bits of neighboring pixels.I



Canny Edge Detection analyzing a histogram of the gradient magnitudes. Most
computational implementations of this step perform a

The Canny edge detector is often used in image un- global analysis of the gradient magnitude distribution,
derstanding. It is based on directional derivatives, so it which is essentially non-local; we have had success with

has improved localization. The Canny edge detector on a Connection Machine implementation using local his-
the Connection Machine consists of the following steps: tograms. The thresholds used in Canny edge detection

* Gaussian smoothing depend on the final task for which the edges are used. A
conservative strategy can use a arbitrary low thresholdI • Directional derivative to eliminate the need for the costly processing required

* Non-maximum suppression to accumulate a histogram. Where a more precise es-
Thresholding with hysteresis. timate of noise is needed, it may be possible to find a

S T s w htsscheme that use a coarse estimate of the gradient magni-
Gaussian filtering, as described above, is a local oper- tude distribution, with minimal global communication.
ation. Computing directional derivatives is also local,
using a finite difference approximation referencing only 4.2. Stereo

local neighbors in the image grid. The Drumheller-Poggio parallel stereo algorithm

Non-mzimum Suppression [Drumheller and Poggio, 1986] runs as part of the Vi-

Non-maximum suppression selects as edge candi- sion Machine. Disparity data produced by the algo-

dates those pixels for which the gradient magnitude is rithm comprise one of the inputs to the MRF-based

maximal in the direction of the gradient. This involves integration stage of the Vision Machine. We are ex-

interpolating the gradient magnitude between each of ploring various extensions of the algorithm, as well as

two pair of adjacent pixels among the eight neighbors the possible use of feedback from the integration stage.

of a pixel, one forward in the gradient direction, one In this section, we will review the algorithm briefly, then
backward. However, it may not be critical to use in- proceed to a discussion of current research.
terpolation, in which case magnitudes of neighboring The stereo algorithm runs on the Connection Ma-
values can be directly compared. chine system with good results on natural scenes in

Thresholding with Hysteresis times that are typically on the order of one second. The

Thresholding with hysteresis eliminates weak edges stereo algorithm is presently being extended in the con-

due to noise, using the threshold, while connecting ex- text of the Vision Machine project.

tended curves over small gape using hysteresis. Two
thresholds are computed, low and high, based on an 4.2.1. Drumhelier.Poggio Stereo Algorithm
estimate of the noise in the image brightness. The non-
maximum suppression step selects those pixels where Stereo matching is an ill-b~sed problem [see Bert-m the gradient magnitude is maximal in the direction of ero et.al., 19871 that cannot be solved without taking
the gradient. In the thresholding step, arselected pixel advantage of natural constraints. The continuity con-

th gradient mntde breolog s , ae elm ted. Al straint [see, for instance, Mar" and Poggio, 1976] asserts
with gradient magnitude below low are eliminated. All that the world consists primarily of piecewise smooth

* Pixels with values above high are considered as edges. surfaces. If the scene contains no transparent objects,
All pixels with values between low and high are edges if then the uniqueness constraint applies: there can be
they can be connected to a pixel above high through a only one match along the left or right lines of sight. If

chain of pixels above low. All others are eliminated. there am no narrow occluding objects, the ordering con-

This is a spreading activation operation; it prop.- straint [Poggio and Yuille, 1984 holds: any two points
gates information along a set of connected edge pixels, must be imaged in the same relative order in the left

- The algorithm iterates, in each step marking as edge and right eyes.
pixels any low pixels adjacent to edge pixels. When The specific 4 piori assumption on which the algo-
no pixels change state, the iteration terminates, taking rithm is based is that the disparity - that is, the depth
0(m) steps, a number proportional to the length m of of the surface - is locally constant in a small region sur-
the longest chain of low pixels which eventually become rounding a pixel. It is a restrictive assumption which,
edge pixels. The running time of this operation can be however, may be a satisfactory local approximation in
reduced to 0(logm), using distance doubling, many cases (it can be extended to more general surface

M Noiue Estimation assumptions in a straightforward way but at high com-

Estimating noise in the image can be performed by putational cost). Let EL(z, y) and ER(z, y) represent

I



the left and the right image of a stereo pair or some two edges are compatible if the sign of the convolution
transformation of it, such as filtered images or a map for each edge is the same.
of the zero-crossings in the two images (more generally, To determine the degree of continuity around each
they can be maps containing a feature vector at each potential match (z, y, d), we compute a local 3upport
location (z, y) in the image). 4core s(z, y, d) =p.,, p(z, y, d), where patch is a small

We look for a discrete disparity d(z, y) at each lo- neighborhood of (z, y, d) within the dth potential match

cation z, y in the image that minimizes plane. In effect, nearby points in patch can "vote" for
the disparity d. The score s(z, y, d) will be high if the

continuity constraint is satisfied near (r,y,d), i.e., if
IE.(z, y) - Eft(z +-d(z, y), Y)Ilpai (1) patch contains many votes. This step corresponds to

where the norm is a summation over a local neighbor- the integral over the patch in Equation (2).

hood centered at each location (z, y); d(x) is assumed Finally, we attempt to select the correct matches

- constant in the neighborhood. Equation (1) implies that by applying the uniqueness and ordering constraints

we should look at each (z, y) for d(z, y) such that (see above). To apply the uniqueness constraint, each
match suppresses all other matches along the left and
right lines of sight with weaker scores. To enforce the

I (Et(z, y)Et(x + d(z, y), y)) 2 dzdy (2) ordering constraint, if two matches are not imaged in
fp. 1the same relative order in left and right views, we dis-

i acard the match with the smaller support score. In effect,
each match suppresses matches with lower scores in its

The algorithm that we have implemented on the forbidden zone (Poggio and Yuille, 1984). This step cor-
Connection Machine is actually somewhat more com- responds to choosing the disparity value that maximizes
plicated, since it involves geometric constraints that af- the integral of Equation (2).
fect the way the maximum operation is performed (see
Drumheller and Poggio, 1986). The implementation 4.2.2. Improvements

currently used in the Vision Machine at the AI Lab uses
the maps of Canny's edges obtained from each image for following topics:

EL, and ER.folwntpisEL an Ea.Detection of Depth Diucomtinm, tsea

In more detail, the algorithm is composed of the

following steps: The Marr-Poggio continuity constraint is both a
strength and a weakness of the stereo algorithm. Fa-

1) Compute features for matching. voring continuous disparity surfaces reduces the solu-

2) Compute potential matches between features. tion space tremendously, but also tends to smooth over
depth discontinuities present in the scene. Consider

3) Determine the degree of continuity around each po- what happens near a linear depth discontinuity, say a
tential match. point near the edge of a table viewed from above. The

4) Choose correct matches based on the constraints of square local support neighborhood for the point will be

continuity, uniqueness, and ordering, divided between points on the table and points on the
floor; thus, almost half of the votes will be for the wrong

Potential matches between features are computed disparity.
in the following way. Assuming that the images are One solution to this problem is feedback from the
registered so that the epipolar lines are horizontal, the MRF integration stage. We can take the depth dis-
stereo matching problem becomes one-dimensiona.1 an continuities located by the integration stage (using the
edge in the left image can match any of the edges in results from a first pass of the stereo algorithm, among
the corresponding horizontal scan Line in the right im- other inputs) and use them to restrict the local support
age. Sliding the right image over the left image horizon- neighborhoods so that they do not span discontinuities.
tally, we compute a set of potential match planes, one In the example mentioned above, the support neighbor-
for each horizontal disparity. Let p(z, y, d) denote the hood would be trimmed to avoid crossing the disconti-
value of the (z, y) entry of the potential match plane at nutty between the table and the floor, and thus would

disparity d. We set p(z, y, d) = 1 if there is an edge at nty bw the te and the floor
location (z, y€) in the left image and a compatible edge not pick up spurious votes from the floor.
at location (z - d, y) in the right image; otherwise, set We can also try to locate discontinuities by ex-
p(z, V, d) - 0. In the case of the DOG edge detector, amining intermediate results of the stereo algorithm.
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i
Consider a histogram of votes vs. disparity for the ta- Identifying Areas that are Outside of the Matcher's Dii.E ble/floor example. For a support region centered near party Range
the edge of the table, we expect to see two strong peaks: The stereo algorithm searches a limited disparity
one at the disparity of the floor, and the other at the range, selected manually. Every potential match in the

I disparity of the table. Therefore a bimodal histogram scene (an edge with a matching edge at some dispar-
is strong evidence for the presence of a discontinuity. ity) is assigned the in-range disparity with the highest

These two ideas can be used in conjunction. Dis- score, even though the correct disparity may be out ofE continuity detection within stereo can take advantage of range. How can we tell when an area of the scene is out
the extra information provided by the vote histograms. of range?

By passing better depth data (and perhaps candidate The mst effective approach that we have at-I discontinuity locations) to the integration stage, we im- tempted to date is to look for regions with low matching
prove the detection of discontinuities at the higher level. scores. Two patches that are incorrectly matched will,

Improvng the Stereo Matcher in general, produce a low matching score.

The original Drumheller-Poggio algorithm matched 4.2.3. Memory-Based Registration and Calibra.
DOG zero-crosuings, where the local support score tion
counted the number of zero-crossings in the left image
patch matching edges in the right image patch, at a Registration of the image pair for the stereo algo-
given disparity. We have modified the matcher in a va- rithm is done by presenting to the system a pattern of
riety of ways. dots, roughly on a sparse grid, at the distance around

1) Canny edges. The matcher now uses edges derived which ster has to operate. The registration is accom-

by a parallel implementation of the Canny edge de- plshed using a warping computed by matching the dots

tector (Canny, 1983; Little et al., 19871 rather than from the left and right images. The dots are sparse

DOG zero-crossings, for better localization, enough that matching is unambiguous. The matching
defines a warping vector for -ach dot; at other points

2) Gradient direction constraint. We allow two Canny the warping is computed by b.-ear interpolation of the
edges to match only if the associated brightness two components of warping vectors. The warping nec-

gradient directions are aligned within a parame. essary for mapping the right image onto the left image
terized tolerance. This is analogous to the re- is then stored. Prior to stereo-matching, the right im-E striction in the Marr-Poggio-Grimson stem a age is warped according to the pre-stored addresses by
rithm [Grimson,1981], where two zero-crosin can sending each pixel in the right image to the processor
match only if the directions of the DOG gradients specified in the table.
are approximately equal. Matching gradient orien- The warping table corrects for deformations, in-
tations is a tighter constraint than matching the cluding those due to vertical disparities and rotations,
sign of the DOG convolution. Furthermore, the those due to the image geometry (errors in the align-
DOG sign is numerically unstable for horizontally ment of the cameras, perspective projection, errors in-
oriented edges. troduced by the optics, etc.) We plan to store sev-

3) The scores ar now normalized to take into account eral warping tables for each of a few convergence angles
the number of edges in the left and right image of the two cameras (amuming symmetric convergence).I patches eligible to match, so that patches with We conjecture that simple interpolation can yield suf-
high edge densities do not generate artificially high ficiently accurate warping tables for fiation angles in-
scores. We plan to changs the matcher so that termediate to the ones stored. Notice that these tables

iHedges that fail to match would count as negative are independent of the position of the head. Absolute
evidence by reducing the support score, but this depth is not the concern here (we are not using it in our
has not yet been implemented. present Vision Machine), but it could easily be recov-

i In the near future, we will explore matching bright- ered from knowledge of the convergence angle. Notice
new values as well as edges, usinmg a crm-correlation also that the whole registration scheme has the flavor
approach similar to that of Little, B61thoff and Pogio of a learning process. Convergence angles are inputs
[1987] for motion estimation [Gillett, in preparation]. and warping tables are the outputs of the modules, the

set of angles, together with the associated warping ta-
bles, represent the set of input-output examples. The
system can "genealize" by interpolating between warp-I



ing tables and providing the warping corresponding to a ferencing (taking the logical "exclusive or") the right
vergence angle that does not appear in the set of "exam- and left image map for different values of (z, y) and
plea". Calibration of disparity to depth could be done vS, v.. The next stage, corresponding exactly to the in-
in a similar way. tegral operation over the patch, is for each processor to

aummate the total (2) in an (z, y,) neighborhood at the
same disparity. Note that this summation operation is

4.3 Motion efficiently implemented on the Connection Machine us-
ing scan computations. Each processor thus collects a

The motion algorithm computes the optical flow vote indicating support that a patch of surface exists
field, a vector field which approximates the projected at that displacement. The algorithm iterates over all
motion field. The procedure produces sparse or dense displacements in the range (:6, ±6), recording the val-E output, depending on whether it uses edge features or ues of the integral (2) for each displacement. The last
intensities. The algorithm assumes that image displace- stage is to choose p.(z, y) among the displacements in
ments are small, within a range (±6, ±6). It is also the allowed range that maximizes the integral. This is
assumed that the optical flow is locally constant in a done by an operation of "non-maximum suppression"
small region surrounding a point. This assumption is across velocities out of the finite allowed set: at the
strictly only true for translational motion of 3-D pla- given (z, y), the processor is found that has the max-
nar surface patches parallel to the image plane. It in a imum vote. The corresponding .(x, y) is the velocity
restrictive assumption which, however, may be a satis- of the surface patch found by the algorithm. The ac-
factory local approximation in many cases. Let Et(z, t) tual implementation of this scheme can be simplified
and Et+At(z, y) represent transformations of two dis- so that the "non-maximum suppression" dccurs dur-E crete images separated by time interval At, such as fl- ing iteration over displacements, so that no actual table
tered images or a map of the brightness changes in the of summed differences over displacements need be con-
two images (more generally, they can be maps contain- structed. In practice, the algorithm has been shown to

i ing a feature vector at each location (z, y) in the image) be effective both for synthetic and natural images us-
[Kass, 1986; Nishihara, 1984]. ing different types of features or measurements on the

We look for a discrete motion displacement v = brightness data, including edges (both zero-crossings of
m (v3 , v,) at each location r, y in the image that mini- the Laplacian of Gaussian and Canny's method), which

vgenerate sparse results along brightness edges, or bright-
ness data directly, or the Laplacian of Gaussian or its
sign, which generate dense results. Because the opti-i ilEt(Z, Y)- Et+AI(z +v.At,Y+vAt)lpkI =Min (3) cal flow is computed from quantities integrated over the
individual patches, the results are robust against thewhere the norm is a summation ove" a local neighbor- effects of uncorrelated noise.

hood centered at each location (z,y); y(z, y) is assumed

constant in the neighborhood. Equation (3) implies that The comparison stage employs patchwise cross-
we should look at each (z, y) for 2_ = (v, VI) such that correlation, which exploits local constancy of the opti-

cal flow (the velocity field is guaranteed to be constantI J.for translations parallel to the image plane of a planar
(E,(z , ) - Et ag(z+vAt, +vAt))'d-dy (4) surface patch; it is a cubic polynomial for arbitrary mo-

tion of a planar surface (see Waxman, 1986; Little et.al.,H is minimized. Alternatively, one can maximize the neg- 1987]. Experimentally, we have used zero-crossings, the
ative of the integrated result. Equation (4) represents Laplacian of Gaussian filtered image, its sign, and the
the sum of the pointwise squared differences between a smoothed brightness values, with similar results. It isI patch in the first image centered around the location interesting that methods auperflciaily so different (edge-
(z, V) and a patch in the second image centered around based and intensity-based) give such simils results. As
the location (z + v3 At, y + vlAt). we mentioned earlier, this is not surprising. There are

theoretical arguments that support, for instance, theI This algorithm can be translated eaily into the equivalence of cros-correlating the sign bit of the Lapla-
following description. Consider a network o proces- cian filtered image and the Laplacian filtered image it-
soru representing the rsult of the integrand in Equa- seld The argument is based on the following theoremI tion (4). Asume for simplicity that this result is ei- [see Little, Bilthoff and Poggio, in preparation), which
ther 0 or 1 (this is the cae if Et and E, A, are binary is a slight reformulation of a well-known theorem.
feature maps). The processors hold the result of dif-

I
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Theorem kr p

If f(z, y) and g(x, y) are zero mean jointly normal H(r, y) - krpr 6)
processes, their cross-correlation is determined fully by fr + It krpr + iPa (

the correlation of the sign of f and of the sign of g ( and which changes only when pr or pa or both change. Thus
determines it). In particular H, which is piecewise constant, has discontinuities that

mark changes in the surface albedo, independently of
Ri, .= arc.sin(Rf,,) changes in the effective illumination.

7'The quantity H(z, y) is defined almost everywhere,

where I = sign f and 4 = sign g but is typically noisy. To counter the effect of noise, we

Thus, cross-correlation of the sign bit is exactly exploit the prior information that H should be piece-

equivalent to cross-correlation of the signal itself (for wise constant with discontinuities that are themselves

Gaussian processes). Notice that from the point of view continuous, non-intersecting lines. As we will discuss

of information, the sign bit of the signal is completely later, this restoration step is achieved by using a MRF

equivalent to the zero-crossing of the signal. Nishihara model. This algorithm works only under the restrictive

first used patchwise cross-correlation of the sign bit of assumption that specular reflections can be neglected.

DOG filtered images (Nishihara 19841, and has imple- Hurlbert [1988] discusses in more detail the scheme out-

m mented it more recently on real-time hardware [Nishi- lined here and how it can be extended to more general

ham et.aL, 1988]. conditions.

The existence of discontinuities can be detected in 4.5. TextureIoptical flow, as in stereo, both during computation and
by processing the resulting flow field. The latter field The texture algorithm is a greatly simplified par-

is input to the MRF integration stage. During compu- allel version of the texture algorithm developed by
tation, discontinuities in optical flow arising from oc- Voorhees and Poggio (1987]. Texture is a scalar mea-
clusions are indicated by low normalized scores for the sure computed by summtion of textan densities over
chosen displacement. small regions surrounding every point. Discontinuities

in this mesure can correspond to occlusion boundaries,
4.4. Color or orientation discontinuities, which cause foreshorten-

ing. Textons are computed in the image by simple ap-
The color algorithm that we have implemented is proximation to the methods presented in Voorhees and

I a very preliminary version of a module that should And Poggio (1987]. For this example, the textons are re-
the boundaries in the surface spectral reflectance func- stricted to blob-like regions, without regard to orienta-
tion, that is, discontinuities in the surface color. The al- tion selection.
gorithm relies on the idea of effectiee illumination and To compute textons, the image is first filtered by a.
on the sigle source assumption, both introduced by Laplacian of Gaussian filter at several different scales.
Hurlbert and Poggio (see Poggio et.aL, 1985]. The smallest scale selects the textural elements. The

The single source assumption states that the illu- Laplacian of Gaussian image is then thresholded at aI rination may be separated into two components, one non-zero value to find the regions which comprise the
dependent only on wavelength and one dependent only blob. identified by the textons. The result is a binary
on spatial coordinates, and generally holds for illumina- image with non-zero values only in the areas of the
tion from a single light soure. It allows us to write the blobs. A simple summation counts the density of blobs,
image irradiance equation for a Lambertian world as the portion of the summation region covered by blobs,

in a small area surrounding each point. This operation

r' = k"E(z, y)p'(z, y) (5) effectively measures the density of blobs at the small
scale, while also counting the presence of blobs caused

where I" is the image irradiance in the vth spectral by large occlusion edges at the boundaries of textured

channel (v = red, green, blue), p(z,y) is the surface regions. Contrast boundaries appear as blobs in the
spectral reflectance (or albedo) and the effective iu Laplacian of Gaussian image. To remove their effect,
mination E(z, y) absorbs the spatial variations of the we use the Laplacian of Gaussian image at a slightly
illumination and the shading due to the 3D shape of coarser scale. Blobs caused by the texture at the fine
surfaces (kW' is a constant for each channel and depends scale do not appear at this coarser scale, while the con-
only on the luminant). A simple segmentation algo- trast boundaries, as well as all other blobs at coarser
rithm is then obtained by considering the equation scales, remain. This coarse blob image fiters the fineI



blobs - blobs at the coarser scale are removed from the boundaries of an object or an object part. The idea isI fine scale image. Then, summation, whether with a sim- thus to couple different cues through their discontinu-
ple scan operation, or Gaussian filtering, can determine ities and to use information from several cues simulta-
the blob density at the fine scale only. This is one exam- neously to help refine the initial estimation of disconti-

* pie where multiple spatial scales are used in the present nuities, which are typically noisy and sparse.
implementation of the Vision Machine. How can this be done? We have chosen to use the

machinery of Markov Random Fields (MRFs), initially
m 5. The Integration Stage and MRF suggested for image processing by Geman and Geman

(1984]. In the following we will give a brief, informalWhereas it is reasonable that combining the evi- outline of the technique and of our integration scheme.dence provided by multiple cue - for example, dge More detailed information about MRFs can be found in
* detection, stereo and color - should provide a more re-Gedntad Geman and Mrrocun e (19871.

liable map of the surfaces than any single cue alone, Gamble and Poggio [19871 describe an earler version of

it is not obvious how this integration can be accom- our integio chem e an sm le e ion o

plished. The various physical processes that contribute our integration scheme and its implementation, outlined

I to image formation - jurface depth, surfce orientation,

aibedo (Lamberian anid pecular component), illumita- 5.1. MRF Models
tioni - are coupled to the image data, and therefore to
each other, through the imaging equation. The cou- Consider the prototypical problem of approximat-
pling is, however, difficult to exploit in a robust way, ing a surface given sparse and noisy data (dejth data),
since it depends critically on the reflectance and imag- on a regular 2D lattice of sites. We frst define theK ing models. We argue that the coupling of the image prior probability of the class of surfaces we are interested
data to the surface and illumination properties is of a in. The probability of a certain depth at any given site
more qualitative and robust sort at locations in which in the lattice depends only upon neighboring sites (the

m image brightness changes sharply and surface proper- Markov property). Because of the Clifford-Hammersley
ties are discontinuous, in short, at edges. The intuitive teye o
reason for this is that at discontinuities, the coupling theorem, the prior probability is guaranteed to have the

between different physical processes and the image data

is robust and qualitative. For instance, a depth dis-
continuity usually originates a brightness edge in the P(f) le--t(7)
image, and a motion boundary often corresponds to a ZI depth discontinuity (and an brightness edge) in the im- where Z is a normalization constant, T is called temper-
age. This view suggests the following integration scheme ature, and U(f) = Ec Uc(f) is an energy function that
for restoring the data provided by early modules. The can be computed as the sum of local contributions fromK results provided by stereo, motion and other visual cues each neighborhood. The sum of the potentials, Uc(X),
are typically noisy and sparse. We can improve them is over the neighborhood's cliques. A clique is either a
by exploiting the fact that they should be smooth, or single lattice site or a set of lattice sites such that any
even piecewise constant (as in the case of the albedo), two sites belonging to it are neighbors of one another.
between discontinuities. We can exploit a prior infor- Thus U(f) can be considered as the sum over the possi-
mation about generic properties of the discontinuities ble configurations of each neighborhood [see Marroquin
themselves: for instance, that they usually are continu- et.al., 19871. An a simple example, when the surfacesI ous and non intersecting, are expected to be smooth, the prior probability can be

The idea is then to detect discontinuities in each given in terms of
cue, say depth, simultaneously with the approximationI of the depth data. The detection of discontinuities is U(I = (fi - f,
helped by information on the presence and type of dis-
continuities in the surfaces and surface properties (see where i and j are neighboring sites (belonging to theI Figure 1), which are coupled to the brightness edges in same clique).
the image. If a model of the observation process is available

Notice that reliable detection of discontinuities is (i.e., a model of the noise), then one can write the con-I critical for a vision system, since discontinuities are of- ditional probability P(g/f) of the sparse observation g
ten the most important locations in a scene: depth dis- for any given surface f. Bayes Theorem then allows one
continuities, for example, normally correspond to the to write the posterior distributionI



for instance, the surface corresponding to the maximum
of P~f/ g) can be found. This corresponds to finding the

(d 4 global minimum of U(f/g) (simulated annealing is one
CP do C7of the possible techniques). Other criteria can be used:

JW Marroquin [1985] has shown that the average surface f
W W W Wunder the posterior distribution is often a better esti-

_¢ W W ,mate which can be obtained more efficiently simply by

finding the average value of f at each lattice site.

I One of the main attractions of MRFs is that the
010 IO10 prior probability distribution can be made to embed

(b) 0I 0 1 0 more sophisticated assumptions abit the world. Ge-

o'[''io iY man and Geman [1984] introduced the idea of another
__1 process, the line process, located on the dual lattice (see

O OlOIOlO Figure 5), and representing explicitly the presence or ab-
- -- 10 10) sence of discontinuities that break the smoothness as-

sumption (Equation (2)). The associated prior energy
M3JP LMI, then becomes

(0) A Uc(f) =h (fe e fi)( _ ) + Oc(I) (1B E 0 o 0 I , I

I where I is a binary line element between site i,j. Vc
tep" P -- J is a term that reflects the fact that certain confgur-

Saker tUse P, m tions of the line process are more likely than others to
VeivA Nosbe.. b, occur. In our world, depth discontinuities are usually

themselves continuous, non-intersecting, and rarely iso-

lated joints. Theme properties of physical discontinu-
r 5ities can be enforced locally by defining an appropriate

set of energy values VC(l) for different configurations of
the line process in the neighborhood of the site (notice
that the assignment of zero energy values to the non-

I central cliques mentioned in Gamble and Poggio [1987]
P(f/g) = lye (9) is wrong, as pointed out to us by Tail Symchony).

In the simple earlier example, we have (for Gaus- 5.2. Organization of Integration

sian noise)
It is possible to extend the energy function of Equa-

tion (5) to accommodate the interaction of more pro-
U(f/g) = Ea-vi(f - g)3 + (fi - fi), (10) cases and of their discontinuities. In particular, we

C have extended the energy function to couple several of
w the early vision modules (depth, motion, texture and
where -- 1 only where data are asailable. More cor- color) to brightness edges in the image. This is a central

point in our integration scheme. brightness edges guide

The posterior distribution cannot be solved ana- the computation of discontinuities in the physical prop-
lyticaily, but sample distributions with the probabil- erties of the surface, thereby coupling surface depth,
ity distribution of Equation (3) can be obtained using surface orientation, motion, texture and color, each to
Monte Carlo techniques such as the Metropolis algo- the image brightness data and to each other. The reason
rithm. These algorithms sample the space of poesi- for the role of brightness edges is that changes in surface
ble surfaces according to the probability distribution properties usually produce large brightness gradients in
P(f/g) that is determined by the prior knowledge of the image. It is exactly for this reason that edge de-I the allowed class of surfaces, the model of noise, and the tection is so important in both artificial and biological
observed data. In our implementation, a highly parallel vision.

computer generates a sequence of surfaces from which,I



* The coupling to brightness edges may be done by
replacing the term Vc(I) in the last equation with the 6. Illustrative Results

term
Figures 7 and 8 show the results of the Vision Ma-

chine applied to the scene in Figure 8 and some of the
V(, e) = g(e', Vc(Ii)) (12) intermediate steps. Figure 7 show the brightness edges

with e' representing a measure ot the presence oi an -omputed by the Canny aigorithm at two different spa-
be between site i, j.The term ghas the tial scales (a = 2.5 and a = 4). We show neither the

stereo pair nor the motion sequence in which the teddy
effect of modifying the probability of the line process bear was rolling slightly on his back from one frame

configuration depending on the brightness edge data be was ro slt on histback erom oon

(V(l,e) = -log p(l/e)). This term facilitates forma- to the next. The results given by the stereo, motion,
tion of discontinuities (that is, I) at the locations of texture and color algorithsn , after an initial smooth-
brightness edges. Ideally, the brightness edges (and the ing to make them dense (see Gamble and Poggio, 19871,I neghbrin irmgeproertes) ctiate wih dffeentare shown in the first column on the left of Figure 8
neighboring image properties) activate, with different (from top to bottom). They represent the input to the
probabilities, the different surface discontinuities (see MRF machinery that integrates each of those data sets

Figure 1) which in turn are coupled to the output of with the brightness edges. The color algorithm uses the

stereo, motion, color, texture, and possibly other early edges at the coarser resolution, since we want to avoid

algorithms. detecting texture marks on the surface; the other cues

We have been using the MRF machinery with prior are integrated with the Canny edges at a smaller scaleE energies like that given in Equations (11) and (12) (see (or = 2.5). The central column of Figure 8 shows the
also Figure 1) to integrate edge brightness data with reconstructed depth, color (the quantity H defined ear-

stereo, motion and texture information on the MIT Vi- lier), texture and motion flow, the left column show the

sion Machine System. discontinuities found by the MRF machinery in each of

We should emphasize that our present implemen- the cues. Processing of the stereo output finds depth
tation represents a subset of the possible interactions discontinuities in the scene (mainly the outlines of the
shown in Figure 1, itself only a simplified version of the teddy, plus a fold of a wet suit protruding outward).
s in F te iely at ion o f The sys- Motion discontinuities are found by the MRF machinerym organization of the likely integration prcss hess with help from brightness edges. The color boundaries
tem will be improved in an incremental fashion, includ- show relp fonstnt s .rfa e color bondes

ing pathways not shown in Figure 1, such as feed-backs show regions of contrant surface color, independently of- from the results of integration into the matching stg its shading: notice, for instance, that brightness edges
fo the stereo and motion algorithms, inside the teddy bear, due to shading, do not appear as
of ts o mcolor edges (the color images were taken from a different

5.3. Algorithms: Deterministic and Stochastic camera). The texture boundaries correspond quite well
* to differnt textured surfaces.

A few disclaimers are in order here. We have cho-

sen to use MRF models because of their generality and Figure 9 shows that the union of the discontinu-I theoretical attractiveness. This does not imply that ities in depth and motion for the scene of Figure 6 gives

stochastic algorithms must be used. For instance, in a rather good "cartoon" of the original scene. At the

the cases in which the MRtF model reduces to standard same time, our integration algorithm achieves a prelim-I regularization [Marroquin et.aL, 1987] and the data are inary classification of the brightness edges in the image,

given on a regular grid, the MR.F formulation leads not in terms of their physical origin. A more complete clas-

only to a purely deterministic algorithm, but also to a sification will be achieved by the full scheme of Figure

convolution filter. 1: the lattices at the top classify the different types of
discontinuities in the scn.Theseofsc soniu

We expect tht during our research we will define iities in the vrious physical processes should represent

deterministic algorithms that are either equivalent to a

MRF formulation, or are a good approximation to the a good set of data for later recognition stages.

stochastic Monte Carlo algorithms. More specifically,
we expect that the probabilistic formulation of MRF 7. The Future
is in a sense too general, and therefore too inefficient.

I Remember that MRF models are quite general (for in- The Vision Machine is evolving rapidly. We plan

stance, regularizsation can be regarded from a proba- to add other early vision algorithms (such as shape-

bilistic point of view as an instance of MRF). from-shading) and to develop further the ones alreadyI
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Figure 6: Grey-level image of a natural scene processed by
the Vision Machine

I
I

I

Figure 7: Canny edge of the image in Figure 6I
implemented (especially color and texture). Most of Notice that in the full system we may have several vi-
the future effort will be directed towards a more sat- sual routines [see Poggio et.aL, these Proceedings) op-
isfactory integration: we will define and implement a erating also on the maps of physical discontinuities and

scheme of the type shown in Figure 1. Finding the cor- performing task-dependent grouping operations before

rect values of the parameter is critical for the practical recognition.
success of the MRF technique;, thus we will attempt to

and useful solutions to the parameter estimation prob-
lem, an issue strictly related to learning from examples. 7.2. Learning and Parameter Estimation

An important step in the very near future will be the

implementation of recognition algorithms operating on Using the MRF model involves an energy func-

the output of the integration stage. tion which has several free parameters, in addition to

the many possible neighborhood systems. The values
T.1. Towards Recognition of these parameters determine a distribution over the

The output of the integration stage provides a set of configuration-space to which the system converges, and

edges labeled in terms of physical discontinuities of the the speed of convergence. Thus rigorous methods for

surfece properties. They should represent a good input estimating these parameters are essential for the practi-

to a model-b recoition algrithm like the one do- cal succes of the method and for meaningful results. In

scribed by Dan Huttenlocher and by Todd Cam in these some cues, parameters can be learned fr'om the data,

Proceedings. In particular, we are interfacing the Vision e.g., texture parmeters [Geman and Gr e, 19871,
Machine as implemented so far with the Cams algorithm. or neighborhood parameters (for which a cellular au-

I nitially, we will use only discontinuities for recognition; tomaton model may be the most convenient for the pur-

later we will use also the information provided by the pose of learning). There are general statistical methods

MRFs on the surface properties between discontinuities. which can be used for parameter estimation:

I
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still reasonable time of convergence to equilibrium
(e.g., away from "phase-transition").

An alternative asymptotic approach can be used
with smoothing (regularization) terms: instead of esti-
mating the smoothing parameter, let it tend to 0 as the
temperature tends to 0, to reduce the smoothing close
to the final configuration (see Geman and Geman, 1987].

In summary, we plan to explore three distinct
stages for parameter estimation in the integration stage
of the Vision Machine:

a Modeling (from the physics of surfaces, of the imag-
Figure 9: Union of depth and motion discontinuities ing process and of the clas of scenes to be analyzed

and the tasks to be performed) and the form of

*the prior and of some conditional probabilities in-

A maximum likelihood estimate - one can use the volved (e.g., the type of physical edges from prop-

indirect iterative EM algorithm [Dempter et.aL, erties of the measurements, such as characteristics

1977], which is most useful for maximum likeli- of the brightness data). Range of allowed param-

hood estimation from incomplete data [see Mar- eter values may also be established at this stage

roquin, 1987 for a special case]. This algorithm in- (e.g., minimum and maximum brightness value in a

volves the iterative maximization (over the param- scene, depth differences, positivity of certain mea-

eter space) of the expected value of the likelihood surements, distribution of expected velocities, re-

function given that the parameters take the values flectance properties, characteristics of the illumi-

of their estimation in the previous iteration. Alter- nant, etc.).I natively, a search constrained by some statistics for 0 Estimating of parameter values from set of exam-
a minimum of an appropriate merit function may pies in which data and desired solution are given.

be employed [see Marroquin, 1987]. This is a earning stage. We may have to use days

I A smoothing (regularization) parameter can be es- of CM time and, at least initially, synthetic images

timated using the methods of cross-validation or to do this.

unbiased risk, to minimize the mean square error.
In cross-validation, an estimate is obtained omit- d Tuning of some of the parameters directly from the
ting one data point. The goal is to minimise the data (by using EM algorithm, cr-vafidation, Be-
distance between the predicted data point (from sag's work, or various types of heuristics).
the estimate above with the point omitted) and the The dream is that at some point in the future the

actual value, for all points. Vision Machine will run all the time, day and night,

In the case of Markov Random Fields, some more looking about and learning on its own to see better and

specific approaches are appropriate for parameter esti- better.

mation: 7.3. Fast Vision: The Role of Time Smoothness

Ii) Besag [1974] suggested conditional maximum like-
lihood estimation using coding methods, m - The present version of the Vision Machine pro-

mum likelihood estimation with unilateral approx- cesses only isolated frames. Even our motion algorithm

imations on the rectangular lattice, or "maximum takes as input simply a sequence of two images. The

pudolikelihood" - a method to estimate pwam- reason for this is, of course, limitations in raw speed.

eters for homogeneous random fields (see Geman We cannot perform all of the processing we do at video

and Graffigne, 19871. rate (say, 30 frames per second), though this goal is cer-
tainly within present technological capabilities. If we

2) For the MPM estimator, where a fted temperature could process frams at video rate, we could exploit con-
is yet another parameter to be estimated, one can straints in the time dimension similar to the ones we are
try to use the physics behind the model to find a already exploiting in the space domain. Surfaces - and

temperature with as little disorder as possible ad even the brightness array itself - do not usually change

too much from frame to frame. This is a constraint of

II
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smoothness in time, which is valid almost everywhere, connected parallel networks, VLSI is limited to 2 1 di-I but not across discontinuities in time. Thus one may mensions, making highly parallel networks much more
use the same MRF technique, applied to the output of difficult and costly to implement. However, the electri-
stereo, motion, color, and texture, and enforcing conti- cal components of silicon integrated circuits are approx-
auity in time (if there are no discontinuities), that is, imately four orders of magnitude faster than the elec-
exploiting the redundancy in the sequence of frames. trochemical components of biology. This suggests that

We believe that the surface reconstructed from a pipelined processing or other methods of time-sharing

stereo pair usually does not need to be recomputed com- computing power may be able to compensate for the

pletely when the next stereo pair is taken a fraction of a lower degree of connectivity of silicon VLSI. Clearly, the
second later. Of course, the role of the MRFs may be ac- architecture of a VLSI vision system may not resemble
complished in this case by some more specific and more any biological vision systems.

* efficient deterministic method such as, for instance, a Signal Representation
form of Kalma filtering. Notice that space-time MRFs Within the integrated circuit, the image data may
applied to the brightness arrays would yield spatiotem- be represented as a digital word or an analog value.
poral interpolation and approximation of a kind already While the advantages of digital computation are its ac-

considered [Fable and Poggio, 1980; Poggio, Nielsen and curaty adv steeis circuits do not have as ac-
curacy an__ 4dgia icis onthv as high

Nishihars, 1982; Bliss, 198,5. functionality per device as analog circuits. Therefore,
T analog circuits should allow much denser computing
7.4. A VLSI Vision Machine? networks. This is particularly important for the integra-

Our Vision Machine is motly specialized software tion of computational circuitry and photosensors, which
running on a general purpose computer, the Connection will help to alleviate the I/0 bottleneck typically ex-
Machine. This is a good system for the present stage of perienced whenever image data are serially transferred
experimentation and development. Later, once we have between Vision Machine components. However, analog
perfected and tested the algorithms and the overall sys- circuits are limited in accuracy and are diffcult to char-
tern, it will make sense to compile the software in silicon acterize and design.
in order to produce a faster, cheaper, and smaller Vi- The primary motivation for a VLSI implementation
sion Machine. We are presently plannin to use VLSI of our Vision Machine is to increase the computationalI technologies to develop some initial chips as a first step speed and reduce the physical size of the components
toward this goaL In this section, we will outline some with the eventual goal of real-time, mobile vision sys-
thoughts about VLSI implementation of the Vision Ma- tems. While the main computational engine of our Vi-
chine. sion Machine is the Connection Machine, which is a very
Algorithms and Hardware powerful and flexible SIMD computer, specific VLSI im-

plementations will attempt to tradeoff computational

m We realize that our specialized software vision algo- flexibility for faster performance and higher degree of
rithms are not, in general, optimized for hardware ir- integration. A VLSI implementation of our Vision Ma-
plementation. So, rather than directly "hardwiring al- chine can offer significant improvements in performance
gorithm" into standard computing circuitry, we will be that would be difcult or impossible to attain by other
investigating "algorithmic hardware" designs that uti- methods. Presently, we are specifically investigating the
Uze the local, symmetric nature of early vision problems. integration of charge coupled devices for photosensing
This will be an iterative process, as the algorithm influ- and simple parallel computations, such as binomial con-H ences the hardware design and as hardware constraints volution and patchwise correlation.
modify the algorithm.

Degree of Parallelism Legends

U Typical vision tasks require tremendous amounts Figure 1: A diagram of the overall organization of the
of computing power and are usually parallel in nature. integration stage (see Gamble and Poggio, 1987 forI As an example, biology uses highly parallel networks a complementary diagram). The output of each of
of relatively slow components to achieve sophisticated the early visual cues (or algorithms) - stereo, mo-
vision systems. However, when implementing our al- tion, texture and color - are coupled to their own
gorithms into silicon integrated circuits, it is not clear line process (the crosses), i.e., their discontinuities.I what level of parallelism is necessary. While biolo is They are also coupled to the discontinuities in the
able to use three dimensions to construct highly inter- surface properties - occluding edges (both extremal

I



here, is that changes in surface Properties segment the image into regions of different trggered a series of psvchophysical cxperi.
usually produce large brightness gradients in constant reflectance 1 26). Thc coupling with ments in order to establish whether and how
the image. brightness edges facilitates finding the brightness edges aid human computation of

The coupling to high brightness gradients boundaries: usually sharp changes in the surface discontiuities iJO).
may be done by rpaigthe term L'ci Y, in ratio H corsodto a subset of the bright- ___________________

the last equation with the term: ness edges. PJFEU.NCES AND NOTES
The union of the discontinuities in depth, IT t'ogp and V Torte. A ; \.'o V

, =~ Ij 6) motion, and texture for the scene of Fig. 3 C a 1 P Pipr\o 001i Aoiicial Intellgence LA60-
gives a -'cartoon" of the original scene. ratoy. Massachusett Institute ot Tccnniogv, Cams-U bridge. 1984i.

x' t ~ representing a measure of the Notice that this "cartoon" represents discon- 2. M. Ptertro. T Poggio, V Torre. i I uie o
srend'i of the brightness gradient (that is, tinuities in the physical properties of 3-13 924 AmficialIntelligence Laboratory. Nlassacnu-

bfa rightness edge) between site iand i. surfaces that are 'well defined, whereas semis Inscatt of Technologv. Cambridge. 1987.
The term ? has the elctr of modiiv'ing the brightness "discontinuities" are not well de- 3 T Pogo V Torr. C Koch. .4oe317 314Uprobability of the mie process configuration lined in terms of surface properties. Our 1985)
depending on the brightness edge data [for Integration algorithm achieves a preliminary 4 T I'ogio Wo;rking Piper iN "5 riiicia hireiii-

gence LAboratory. Massachusets Instituate ot Tech-
instance, 01,11 ~1 1) This term classification of thie edges in the Image. in naliogy. Cambridge. 1985
facilitates tf.ormation of discontinuities (that terms of their physical origin. A more corn- S E. B. Gamle an~d T Poggio. .4 1 iie=o Q-0~
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ness changes, wvithout restricting them only plemrenting the fu~ll scheme of Fig. 1; the 6. J Hutchinson. C. Koch. I Luo. C Itcad. IEEE
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Fig. 3. ai Grey level image and assoc'ated
bnghtncss eages as computed wth a parallel
mplemcniation of Cannv's algorrim jr
bi Stereo data left,. reconstructed surtace

depth J enrer, ind depth dJ sont nu ties
found by the MRF integration scheme using
brighmess edges righti. ci Motion data for-I ,he same scene lft-n. :,he MR5F reconstructed
Hlow center and its disconrinuities di Tex-
ture data left .reconstructed unonrm texture

regions center, and texture discontinu tries.

0 Color data :huei. the MRF segmentation
in terms of constant reflectance regions cen-
ter and their boundaries.
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quantin' analogous co temperature in statjs- computed anai-caly, but sample distrbu- certain configuranons of the line process are
rical mechanics, and L, ' = ZUL t) is an tions with the probability distribution of more likely than others to occur. Depth
energy runction that can be computed as the Eq. 3 can be obtained by means of Monte discontinuiles are usually themselves con-

sum of local contributions from each lattice Carlo techniques such as the Metropolis tinuous, nonintersectng, and rarely isolated
site i. The energ' at each larce site C',i , is. algorithm t 8. These algorithms sample the points. These properties of physical discon-
:tself, a sum of the potentials, 'c f., of space of possible surfaces according to the tinuines can be enforced locally by defining
each site's cliques. A clique is either a single probabifirv distribution Pt/€ that is deter- an appropriate set of energy values V"c ill

.artice site or a set of tacce sires such that mined by the prior knowledge of the al- for different configurations of the line pro-
in *o sires blongig to it are neighbors lowed class of surfaces, the model of noise, cess (5. 12. 17).
ofrone another , ; I_'.-As a simple example, and the observed data. In our implemcnra- It is possible to extend the energy func-

hen the surfaices are expected to be smooth non, a highly parallel computer generates a non of Eq. 5 to accommodate the interac-
izkc a membrane . [he prior energy can be sequence of surfaces from which, for i- non of more processes and of their discon-

gven in terms of stance, the surface corresponding to the tmnwtes. In particular, we have extended the
maximum of P~f'g) can be found. This energy function to couple several of the earlv

S . 2) corresponds to inding the global minimum vision modules (depth, motion, texture, and
of U(f 'g) (simulated annealing is one of the color) to sharp changes of brightness in the
possible techniques). Other criteria can be image. This is a central point in our integra-

where , Is a neighboring site to i i that is, i used: Marroqun (19) has shown that the ion scheme: here we assume that changes of

and) belong to the same clique). average surface f under the posterior distri- brightness guide the computation of discon-
If a model of the observation process is buton is often a better estimate, which can antuties in the physical propertes of the

available ,that is. a model of the noise), then be obtained more efciently simply by find- surface, thereby coupling surface depth, sur-
one can write the conditional probability ing the average value of f at each lattice face orientation, motion, texture, and color
P(gf;f of the sparse observation g for any site. each to the image brightness data and to
given surface f Bayes's theorem then allows One of the main attractions of MR.F each other. The reason for the primary roleUone to write the posterior distribution: models is that the prior probability dismbu- of the gradient of brightness, as conjectured

non can be made to embed more sophisti-
I ) f T cated assumptions about the world. Geman

P zf' , =  and Geman (12) introduced the idea of
another process, the line process, located on " O

In the example of Eq. 2, we have (f or the dual lattce (see Fig. 2), and representing O:O O

Gaussian noise): explicitly the presence or absence of discon- =
tinuities that break the smoothness assump- .0- % C

C',(f'g) = t ..()2 -t~ .+ h(f -g,) 2  non (Eq. 2). The associated prior energy ,, €

(4) then becomes- W W w

where Y, = 1 only where data are available, U,(f,1) = Z (f-/)2(l - 1') + p Vc(l)
and otherwise -y, = 0. More complicated b (5 ololololo
cas can be handled in a similar manner (1).o lol lol

The maximum of the posterior distribu- where / is a binary line element between site o llolo'lo
non or other related -simates cannot be , andj. The term Vc(I,) reflects the fact that . ..

~010 1010101E P9..1. A sketch of the over- 0IOI0I I0I
all organton of the Lme. -
graton stage 5, 26). The 010101 00
outputs of the early visual . . . . .
cues (or algonthms)---s-te MRF laft
reO, motion, texture, and C
color-are coupled to their _

own line process (the cross- de- 1o
esi. that is, their discoiitn- Lie0
uitles. They are also coupled and
to 'e discontinuies n the continuous I II
sun , properti s--occlud- processes 0 0 0U ng edges :both extremal0
edges and blades), onenta-
non discontinuities, specu- mepUh proces
lar edges, texture marks i in- Of
cluding albedo discontinu- physical discontinuities nni.J pri em
ues), and shadow edges. vnwWneg rhorl
The image data. especially the sharp changes in bnghtness labeled here as edges. are input to the lattices
chat represent the discontinuities in the physical properties of the surfaces. The bnghmess edges may be ft 2. (a) Coupled MRF lattices: the circles
completed before integration (in some cases this may lead to "subjective contours") by the equvalent of represent the continuous process (depth, motion.
a higher order MRLF that reflects long-range constramts of colineanty and continuation and even color, or texture) and the crosses [the Lines in b iI
hypotheses from the recognition stage, which is then expected to use the set ofdiscontinuies at the top represent the associated line process, that is, the
as its main input. Our present implementation does not couple the different types of physical discontinuities. The neighborhoods of the contin-
discontinuities: sharp changes in brightness are directly coupled to the line processes of each of the cues. uous process and of the line process are shown in
The individual modules are therefore integrated with each other only indirectly, through the bnghmess (). The cost of an isolated line process is much
edges. higher than that of a continuous line.
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suits on synthetic and natural images. The use of intensity edges to integrate
other visual cues and to help discover discontinuities emerges as a general
and powerful principle.I@0 Massachusetts Institute of Technology, 1987
Acknowledgments. This report describes research done within the Ar-
tificial Intelligence Laboratory. Support for the A.I. Laboratory's artificial
intelligence research is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research (ONR)
contract N00014-85-K-0124. Support for ths research is also provided by
a grant from ONR, Engineering Psychology Division and by a Hughes Air-
craft Corporation gift to the Artificial Intelligence Center for T. Poggio.

I
I



rn

1 Introduction

One of the keys to the reliability, flexibility and robustness of biological visual
systems is their ability to integrate several different visual cues. Early vision I
processes such as stereo, motion, texture, shading and color give separate
cues to the distance of three-dimensional surfaces from the viewer and to
their material properties. Integration of the evidence provided separately by
these cues can provide a more reliable map of the surfaces and their properties
than any single cue alone.

Thus visual integration is likely to be a key to understanding biological vi-
sual systems and to developing robust vision machines. Existing methods do
not seem capable of providing a general solution. Standard regularization[2]
provides a common framework for many early vision problems and leads to
the minimization of quadratic energy functionals. If standard regularization
is used to integrate information from different processes, the energy func-
tional consists of the sum of quadratic parts, each associated with a separate
process. This implies that the result is a linear combination of the different
cues (possibly with space-varying coefficients). Linear combination - say of
depth from stereo and from shading - does not seem, however, a flexible
enough integration method. Even more important, no instances of standard
regularization can handle discontinuities, because the solution space is re-
stricted to generalized splines[21,2]. As we will explain later, we believe that
detecting and representing discontinuities (for instance depth discontinuities)
is a key part of the integration step[211.

To overcome these difficulties we have developed an extension of regular-
ization that promises to deal simultaneously with discontinuities and with the
integration of vision modules. This extension is based on the use of coupled
Markov Random Fields', introduced recently by Geman and Geman[9] and
extended by Marroquin, Mitter and Poggio[19]. The standard regularization I
method for vision is a special case of this new approach.

1.1 The Role of Discontinuities I
One of the most important constraints for recovering surface properties is
that the physical processes underlying image formation are typically smooth:

'A different, interesting approach has be explored by Blake[3]
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depth and orientation of surfaces are mostly continuous and so are reflectance
and illumination. The smoothness property is captured well by standard reg-
ularization. Surfaces and their properties, however, are not always smooth:
they are smooth almost everywhere, but not at discontinuities. Lines of
discontinuity are themselves usually continuous, relatively smooth, noninter-
secting curves. It is critical to detect the discontinuities reliably, because
they usually represent the most important locations in a scene: depth dis-
continuities, for instance, often correspond to the boundaries of an object
or of a part. Furthermore, discontinuities play a critical role in fusing in-
formation from different physical processes. The reason is clear: in smooth
regions, the physical processes are coupled together by the imaging equation,
and all contribute to image formation. However, the coupling is difficult to
know precisely: it depends on quantities such as the form of the reflectance
function. The effects of discontinuities are instead robust and qualitative: for
instance, depth discontinuities usually correspond to intensity edges. There-
fore, discontinuities are ideal places for integrating information. Furthermore,
partial information about discontinuities in a single process can be detected
relatively easily. Several types of motion discontinuities, for example, can
be measured with simple operations on the time-dependent intensity array,
especially if the interframe interval is small. Partial albedo discontinuities
also are often detectable using simple operations. Intensity edges are de-
tected quite reliably by the Canny edge detector. However, the fast, rough
detection of discontinuities performed by these early operations is noisy and
incomplete: it must be refined by integrating them across processes and by
exploiting constraints on the continuity of discontinuities.

In summary, discontinuities: 1) represent the most useful information, 2)
are easy to detect (though in a partial and possibly noisy way) and 3) provide
good locations to integrate different cues.

II 1.2 Coupled Markov Random Fields

Markov Random Fields for image modeling have seen increasing use since
the work of Geman and Geman[9]. Their utility for image modeling de-
rives from several MRF characteristics. MRFs provide a natural way to
impose general image properties of smoothness and continuity, for example
of depth and motion, while also incorporating discontinuities. Bayes' rule
establishes a relationship between the possibly corrupted observed data and
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the desired scene data. Solution methods are available, though often time I
consuming. Some recent MRF applications have involved scene segmentation
using depths[18], texture(6] and motion[2 0].

A Markov Random Field on a lattice can be represented as a lattice of
sites, each one with a random variable. The value depends probabilistically
on the value of neighboring sites. The rules governing this local dependence
can be given in a variety of ways and can be made to capture constraints
such as the continuity of a surface (if the MRF represents depth values).

Our idea is to associate a MRF on a lattice to each physical process to be
integrated and another (binary) MRF to its discontinuities (see figure 1). The
lattices are coupled to each other to reflect the interdependence of the corre-
spc nding processes in image formation. Thus the various MRFs mirror the i
different physical events that underlie image formation: surface and surface
discontinuities, spectral albedo and albedo discontinuities, shadows, surface
normal, and so on. Physical constraints apply to each of these processes in-
dependently. In addition, there are constraints between these processes (for
instance between depth and surface normal). The image data constrain the
way the processes combine. Note that consideration of sequences of images in
time will introduce additional powerful constraints such as rigidity. The con-
straints on the surfaces are local conditions (such as smoothness, necessary
mainly because of its regularizing role in the face of omnipresent noise) valid
everywhere except at discontinuities. As we discussed earlier, discontinuities
are critically important and should be detected early.

Notice that the coupling of the line process with the associated continuous
process provides a module that combines -egion-based with boundary-based
segmentation (see figure 1). I

The local potentials underlying the a priori probability distribution of the
MRFs represent the constraints on the physical processes (smoothness, posi-
tivity, values within certain bounds, etc.); the coupling between MRFs repre- i
sents the compatibility constraints between processes. The device of coupled
MRFs provides an ideal tool to impose local constraints such as smoothness,
allowing at the same time an explicit role for discontinuities through the line i
proceues[9] and similar processes such as ocd.luion,(19. Our new idea is to
incorporate additional observable discontinuity data provided by algorithms
specialized to detect sharp changes in the observed properties of intensity,
motion, stereo disparity, texture, and so on. The observable discontinuities
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Figure 1; MRF lattice representing the output of different early processes
and their discontinuities (the crosss represent the site of the binary line
processes). Each representation, for instance depth, is coupled to its discon-
tinuities and to other cues such as intensity or motion.
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provide an initial rough solution to the segmentation problem. Using the I
MRFs for estimating the fields gives increasingly precise solutions, simulta-
neously filling in the continuous regions that are only sparsely observable.

The solution at each iteration is available to later modules, such as recogni-
tion.

1.3 The Key Role of Intensity Edges

One of the results of our integration work is that intensity edges play pri-
mary role in guiding the search for discontinuities in other processes (for
instance depth). The point seems so important that we would like to phrase
it as a rather general conjecture on the proper organization of the integration 3
stage: intensity edges guide the detection of discontinuities in the other ph y-
ical processes, thereby coupling surface depth, surface orientation, shadows,

specularities and surface markings to the image data and to each other. I
The reason for the critical role of intensity edges is intuitively clear -

usually changes in surface properties (depth, orientation, material, texture)
produce large intensity gradients in the image. Under the assumption of

opacity and of a simple imaging model (the reflectance function is assumed
to contain a lambertian and a specular term), there are six physical causes

for large intensity gradients in the image: occluding edges (extremal edges

and blades), folds, shadow edges, surface markings and specular edges. In
addition, motion discontinuities are usually coupled to intensity edges. It is

for exactly this reason that edge detection is so important in artificial - and
probably also biological - vision.

1.4 Plan of the Paper

In this paper we introduce a method for detecting and reconstructing depth

discontinuities by using the information provided by intensity edges. We do
the same for motion discontinuities. First we introduce the Markov Random

Field formalism. The use of intensity edges for surface interpolation is dis- fl
cussed next, together with the derivation of the asociated MRF model. We

then describe our Connection Machine implementation and the results on

synthetic and real data. Finally the discussion focuses on the open problems I
and on the implications of our results for the general problem of integrating
all vision modules. 3
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2 Coupling Intensity Edges with Sparse Depth
Data

I To illustrate our approach we consider the specific and important problem of
computing an approximate surface and especially the surface depth disconti-
nuities from sparse depth data[10,25,18]. The main new idea here is to exploit
the integration of additional vision cues. In particular we describe a scheme
in which intensity edges are integrated with sparse depth data. Sparse depth
data arise from the output of feature-based stereo algorithms. Typical stereo
algorithms provide depth data at a subset of image features[15,10,8]. These
features might be a Laplacian filter's zero-crossings from one of the intensity
images. The depth information is computed by measuring pixel displace-
ments (disparity) between corresponding image features. As is typical of all
known stereo algorithms, the disparities are plagued by errors precisely atf depth discontinuities where surfaces are usually occluded.

The problem, then, is to smooth and fill in the sparse depth data (i.e.,
reconstruct the surface), while detecting the critically important depth dis-
continuities. Prior attempts at depth discontinuity identification allowed the
discontinuities to form anywhere in the image provided the depth difference
between neighboring sites was significant[18,24]. Due to the sparseness and
noise in the depth data, the identified discontinuities are: 1) offset from and
2) ragged or wiggiy compared with the correct discontinuities. These limita-
tions become more serious when the images contain a large range of depth
differences, as in natural images.

Because of the constraints on image formation discussed earlier, the cor-
rect depth discontinuities will, in almost all cases, correspond precisely to the
locations of intensity edges. Our integration scheme exploits this by restrict-
ing depth discontinuity formation to a subset of the intensity edges. This
restriction ensures that the smoothness and continuity of discontinuities can
be no worse than the intensity edges themselves. In addition, the difficult
problem of MIU' pa ametz spoeiication is simplified since this integration

Sscheme proves less sensitive to MRF parameter variations, particularly when
the depth data contain a large range of depth differences.

There are some cas in which discontinuities will not occur at intensity
edges. Any object that blends in with its background presents such a case.
This situation occurs rarely in natural scenes; yet, for practical reasons such
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II I

as camera underexposure or saturation, the object may blend in with the I
background at some locations. However, for these cases, the point is some-
what moot, since without intensity edges, feature-based stereo or motion
algorithms will not provide depth or motion data. U

A more general situation arises when the features used for stereo or mo-
tion are different from the discontinuity-limiting features. This is desirable
since the continuity constraints used by stereo and motion algorithms assume
that the features used for matching are located on surfaces. Thus stereo and
motion algorithms should use high resolution, dense features that identify
surface markings as opposed to bounding contours which in general corre-
spond to surface locations that are different in the two images of a stereo
pair. The discontinuity-limiting features however can be chosen to better
correspond to object boundaries.

The results section contains examples in which the discontinuities are
identified and the surface reconstructed both with and without the benefit U
of intensity edge information. The next section presents a limited overview
of MRF particulars and contains the appropriate MRF energy function for
integrating intensity edges with, in this case, the sparse depth data produced I
by a stereo algorithm.

3 MRF Formulation for Stereo and Inten-
sity Edge Coupling Hl

The theory of Markov Random Fields can be found elsewhere[9,17]. We
present only an overview here followed by a description of the energy func-
tions used for integration.

The Hammersley-Clifford theorem states the equivalence between a MRF
and a Gibbs distribution as follows. If X is a MRF on a lattice S with respect
to the neighborhood system G, then P(X w w) is given by:

P(X =- ) - e-U(x) (1)

Z is a normalization factor, T is the temperature and U(X) is the energy 3
function. The temperature parameter, T, could be absorbed into U(X);
however, when the solution method is discussed, T proves useful as a separate
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variable. The energy function is of the form:

U(X) E Uc(X). (2)

The sum of the potentials, Uc(X), is over the neighborhood's cliques. A
clique is either a single lattice site or a set of lattice sites such that any two
sites belonging to it are neighbors of one another. The function P(X = w)
is called the prior distribution and abbreviated here by P(X).

The prior distribution on X, where X, for example, might be the recon-structed surface, must be determined based on some observations or input
data, Y. To relate X to Y Bayes' formula is used,

1 P(XIY) = P(YIX)P(X)
P(Y) (3)

The observations, Y, are obtained conceptually by degrading X, such as by
the addition of noise or blurring. If the type of degradation is known, the
distribution P(YIX), can be computed. Marroquin[171 has shown that for
the case of zero-mean white Gaussian noise, P(YIX) is a Gibbs distribution
with potential:

U(YIX) = , U,(YIX); U,(YIX) = -(x( - Yi (4)

The sum is over all lattice sites and

f1, if input data exists at lattice site i
'i 0, otherwise. (5)

When this result for P(YIX) is combined with the MRF prior distribution,
P(X), and Bayes' rule the a posteriori distribution P(XIY) is:

P(XIY) = i x ,U(I~ (6)

I for U,(XIY) = Ui(X) + Ui(YIX) and with Z a normalization constant inde-
pendent of X. This a poeteriori distribution provides the likelihoods for all
possible states X, given the observable data Y.

Given the posterior distribution P(XIY) and the external field Y the de-
sired field X can be retrieved once a suitable error criterion is specified. The
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.11azimizer of the Posterior Mean (MPM) reduces the problem of annealing I
and has been successfully applied for our results. With the criterion specified,
the relaxation algorithm for solution is largely determined. The question of
a suitable error criterion and algorithmic consequences has been thoroughly
discussed by Marroquin(17].

The problem has now become one of specifying the MRF potentials,
UJ(X) and Ui(YjX). The potentials impose the physical constraints of con-
tinuity and smoothness of surfaces (except at depth discontinuities) along
with continuity and smoothness of depth discontinuities. These constraints U
are imposed by tailoring the energy function to minimize the energy (maxi-
mize the probability) when the state occupied satisfies the desired physical
constraints. Typically this choice is empirical although one might envisage I
estimating the prior associated with, for instance, depth smoothness from a
specific class of surface data.

The MRF state space used herein is similar to that of Geman and Geman[9]

along with Marroquin[17] where each lattice site is composed of a depth pro-
cess and two line processes, X = {F, L). The depth process, F, is a con-
tinuous random variable whose value is related to the distance of a surface I
point from the observer. The value of F at site i is denoted as f. where
-oo !_ fi < oo. The depth process neighborhood system to site i consists fl
of the four nearest neighbors: east, south, west and north, to i. Although
a continuous random variable should not be updated using the Heat Bath
algorithm, the depth process can be deterministically updated[17], provided I
the MRF energy is suitably defined. Figure 2 illustrates the MRF lattice
with the depth and line processes.

The line process used here, L, contains a vertical and horizontal orien- I
tation that are conceptually located between lattice sites. The vertical line
process is located between its lattice site and the neighboring eastern lat-
tice site, whereas the horizontal line process separates its lattice site and
the nearest southern lattice site. Each orientation is a binary random field,
1I E 10, 1) where the scripts on If denote the line process that separates

lattice site i from j. The horizontal line process at site i is denoted as 0;
the vertical line process is 1'. Smoothing of the depth process is inhibited
when the line state is on, If = 1, since smoothing should not occur across

depth discontinuities; otherwise, depth process smoothing is performed. An
on state signifies the presence of a depth discontinuity. The conditions for
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Figure 2: (a) A lattice site is composed of a single depth process (illustrated
with a circle) along with a vertical and a horizontal line process. The MRF
Lattice consists of a rectangular grid of these lattice sites. (b) The neigh-
borhood for the depth process and the vertical line process neighborhood.
The black dot in the line process neighborhood indicates the lattice site for
this neighborhood. (c) The five maximal cliques (north, east, south, west
and central) for the vertical line process are shown. In this paper we only
consider configurations of the central clique. This is equivalent to assigning
zero energies to all configurations of the other four cliques.

10In

I



depth discontinuity formation are encapsulated in the MRF energy function i
presented subsequently.

The external fields to the MRF are the sparse depth information and the
intensity edges. The sparse depths, G, are represented by two variables, g,
and -t for site i. The value gi is analogous to f,; it is continuously valued
over the real numbers, although in practice, since gi is provided by stereo
output, it is discrete. The variable -ti encodes the sparseness of the stereo
output and is defined as in equation 5.

The intensity edges are represented by the field, E. This field is similar to i
the line process, L, except that el = 1, rather than indicating the presence of
a depth discontinuity, permits the formation of a depth discontinuity between
lattice site i and neighbor j. The MRF energy is designed so that ei = 0 I
implies (in the present implementation) Ii = 0 for all i,j E S. An edge
detector, such as Canny's[4], will mark a site i as an edge, but e4 marks
potential discontinuities between sites i and j. To resolve this ambiguity, if I
an edge is at site i, then e! = 1 where k is each of the nearest neighbors to
site i. This intensity edge field, E, along with G comprise the MRF external
field Y such that Y = {G, E).

Given the external fields, Y. and the random variables, X, equation 6
provides the posterior distribution with the MRF energy given as

U(xIy) = E ui(xly)

U(zjy) = a-fi(f, - g,) + E (1 - 1f)(f, -

[ Uc(l;) + 0'(1 - e,)l,] . (7)
jE<h,u>

The first term in this equation is the coupling between the depth process
and the sparse and noisy input data. The coupling factor, a, is related to the
noise in g. For noiseless data, a --+ oo thereby ensuring f, = gi. Otherwise,
when a = 0 no input data coupling occurs and f is smoothed by the term
involving (f, - f)2 in equation 7. The precise relation between a and the
noise depends on the noise model assumed. For a model of measurement
that includes Gaussian random noise

1=- |
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i where a is the gaussian's half width at half maximum[17]. Note that if the
noise model's parameters vary locally, it might be appropriate to vary a
locally as 1

Local variation in noise parameters does occur in the stereo algorithm of
Drumheller and Poggio[7]; this variation is reflected in the stereo match scores
of that algorithm. The present paper does not address this issue; here we
keep a constant, usually in the range 0.1 to 2.0. The input data coupling
to f occurs when -f = 1. Typically 5 to 10% of the lattice sites have input
depths associated with them.

The last term in equation 7 implements the integration scheme between
sparse stereo depths and intensity edges. The term forbids depth discontinu-
ity formation except where an external edge exists. Discontinuity formation is
prevented by letting 0' --, oo. When IH = 1 and e' = 0, this term contributes
a large energy, U,(xfy) --+ oo and the associated probability for lI = 1 is zero.
At sites where ei = I this energy term contributes nothing and the depth
discontinuity formation is determined by the other factors in equation 7. The
problems of misalignment might be handled by suitably modifying this term
in the energy U,(zly) to produce a it cone of influence or, for a simple case,
by "thickening" the input intensity edges. For instance, we may use instead
of el in equation 8, e4 * G, where * denotes convolution and G is a gaussian
or another appropriate cone of influence function. The results presented in
this paper do not utilize a cone of influence.

The second and third terms in equation (7) encapsulate our prior expec-
tations concerning depth discontinuities and surface reconstruction. They
compose the potential U(X) of the prior distribution (equation 1). These
two terms 'compete' in the sense that turning on a line costs energy $Uc(lf)
but saves energy (fi - f,)2. The interplay of these two potentials largely
determines the formation of depth discontinuities where ej = 1. The second
term couples the line and depth processes, the third term determines the
line proces clique energy. This line and depth process coupling is summed
over the nearest neighbors, nn, to site i, with each neighbor contributing an
energy (f, _-f,)2 whenI -=- 0.

The quadratic term, (fi - fi)2, tends to smooth the depth process since it
is minimized when fi = fi. Depth discontinuities have a higher probability
of forming when the energy to create a line, $Uc(l), is less than this energy
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to smooth the depths. The factor 3 is a free parameter that determines what i
size depth difference is likely to produce a depth discontinuity. Specification
of 3 is largely image dependent and, although a suitable range has been
determined, a general theory specifying 43 remains elusive. The line process
cLique energy will be examined in detail later.

The Heat Bath algorithm cannot be simply applied to equation 7 since
the f, are continuous variables. Instead we employ a technique to smooth
the depth process deterministically, but to update the line process stochas-
ticaly with the Heat Bath algorithm[17]. With the line process state fixed, I
the MRF energy of equation 7 is non-negative definite quadratic with a sta-
ble and unique fixed point for the f, (practically, 3' never contributes since
the configuration e, = 0 and If = 1 has a vanishing probability). In this I
situation, the depth process can be smoothed deterninistically to find the
fixed point. After this fixed point in depth is determined, the line process is
stochastically updated, the new fixed point in depth is determined and the
scheme is repeated.

Once the line process approaches equilibrium (roughly 1000 iterations),
statistics are gathered to compute the MPM estimate. The MPM estimate is
computed from P(Iq = 1) = I _ I, where n is the number of iterations over
which statistics are gathered[17]. When P(I = 1) 2! (0.5+ 1/V'4 W, statistical
fluctuations about 0.5 are reduced and the MPM estimate is turned on to
mark a discontinuity. Use of the MPM estimate does not require annealing
but the a posteriori distribution's coupling parameters must produce a rea- I
sonable amount of line process agitation thereby sampling much of the line
process sample space.

3.1 Choice of Line Clique Energies

Figure 2 shows the line process neighborhood for the vertical line process.
Of the five cliques shown for this neighborhood, only the clique centered
about the vertical lattice site has, by design, a non-zero potential Uc(lI).
This potential depends on the 256 possible configurations amociated with
the clique. The desirable configurations are a small subset of all possible

configurations and they impose the constraints of smoothness and continuity
on the depth discontinuities. These constraints are embodied in the following I
five heuristics which divide the desirable configurations into classex.
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I Figure 3: The four classes of non-forbidden. line configurations for the verti-
cal line process. A dot, '.' represents an off state; on states are shown with
their oriented lines. The symmetry operations producing the other allowed
configurations are discussed in the text. The horizontal line process configu-
rations are identical provided the vertical line process cliques are rotated by
90 degrees.

" Turn on a lone site provided a 'large' depth discontinuity is presentU - [Line Creation].

* Turn on a site extending an already present line segment even if the

I

depth discontinuity is 'small' [Line Growoth]..

" Always turn on a site if doing so would connect two line segments [Line
Completion).

* Allow tam to occur infrequently where supported by at least a 'small'
depth discontinuity [Tee Completion].

m All other configurations should occur rarely if at all [Forbidden).

Examples of the first four classes are shown in figure 3. In addition
to these configurations, three symmetry operations produce the other non-
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forbidden classes. These symmetry operations are: rotation by 180 degrees n
about an axis perpendicular to the page, reflection about the vertical axis (for
the vertical line process orientation) and the 180 degree rotation followed by
the reflection operation. With these symmetry operations and clique classes,
a total of 22 unique configurations are allowed from the original set of 256.
When I' = 0 (line is off), the clique potential is 0. However, when l' = 1, the
clique energy is determined by the five classes; this is the energy required to
turn on the line.

The line process clique considered here is only one of the cliques associ-
ated with the neighborhood shown in figure 2. In previous work[9,171, the
smaller neighborhood did not readily produce lines of any orientation; the
cliques tended to create vertical or horizontal line segments. The 'large' I
neighborhood used here (though incompletely, because we assign zero en-
ergies to several cliques), does encourage isotropic line formation without
exacting too high a computational penalty.

4 Stereo and Synthetic Image Results I
The MRF scheme for coupling intensity edges to sparse stereo depth data
has been implemented on a Connection Machine 11]. The sparse depth data
and intensity images from both real stereo and synthetic images have been
examined. This section presents these image results for some typical images.

4.1 Connection Machine Implementation

The Connection Machine (CM) is a fine-grained parallel computer manufac-
tured by Thinking Machines Corporation. We used their CM-1 model with
16k processors. Each processor is connected to its four nearest neighbors n
(north, east, south and west) in a two-dimensional grid, the NEWS network,
and each 16 processor group is connected to a 12-dimensional hypercube, the
Router. These two communication modes allow fast access between neigh- I
boring processors and logarithmic-time access between any two processors.
Each processor is a simple 1-bit processor with 4 kilobits of memory. All
processors execute a single instruction stream. The CM was configured to I
match the image size, 256 x 256, by using virtual processors.

I
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For the MRF implementation each CM processor represents an MRF lat-
tice site. This configuration proves ideal for implementing the MRF cliques
over the CM NEWS network. The limited number of non-forbidden line
clique states and energies are stored in tabular form at each processor. De-
termination of the line clique state requires access to the four nearest neigh-
bors plus the north-east (south-west) neighbor for the vertical (horizontal)
orientation. At the image borders, the line processes are always on, thereby
conveniently preventing depth process smoothing beyond the borders.

The MRF input data was obtained from two previously implemented
CM-i algorithms. For the real stereo depth data, MIT's Eye-Head system
provided the stereo pair and the Drumheller-Poggio CM-i stereo algorithm[8]
produced the disparity data at a subset of DOG zero-crossing features. The
intensity edges came from Todd Cass' [13] implementation of Canny's edge
detector. These edges do not coincide with the stereo algorithm features.

When synthetic data was used, the image depths were produced by the
TMC 3-D Toolkit as was a dense depth map. A sparse map was obtained
by randomly discarding 90 to 95 percent of the depth values. Uniformly
distributed random noise was added to the synthetic sparse depth data.

The initial line process state is set to mimic the intensity edge map as pro-
vided by the Canny edge detection stage. The MRF depth values are created
by using the sparse input depths to "brush fire fill" and then by determin-
istically smoothing the depth values. During the deterministic smoothing of
the initial depth process, the depth external field coupling, a, is infinite.

4.2 Results

Figure 4 shows the MRF results on a synthetic image for two intensity edge
coupling schemes. In the first scheme, intensity edges are not used in the
MRF process. This allows depth discontinuities to form anywhere and is
achieved by setting efi = 1 for all i,j E S. The upper left image shows the
synthetic scene from which the sparse depth data was derived. The lower
left image in Figure 4 illustrates the depth discontinuities identified with the
MPM estimate of the MRF process. When the depths vary rapidly, many
closely spaced discontinuities are formed. These discoLtinuities are ragged
and also displaced from the actual object boundaries (as marked by intensity
edges). The reconstructed depth surface is not shown.

The second scheme strongly penalizes depth discontinuity formation ev-
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Figure 4: The MRF process and its result on a synthetic image. Almost
all depth discontinuities are found when intensity edge coupling is utilized. I
The steepness of the geodesic dome's boundary leads to false discontinuity
identification. 3
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I18 Figure 5: The MRF process and its result on a reaM image with computed
I stereo data. For both cases the texture on the newspaper has disappeared;I however, without intensity edges, the small box on the upper right also dis-

appears. When intensity edges are used some of the box's borders persist
Il and the nwperborder is welU localized.
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erywhere except at the intensity edges shown in the upper right image of
Figure 4. The external field, e4, equals one only at the intensity edges pixels.
The depth discontinuities found are shown on the lower right of Figure 4.
Nearly all the intensity edges due to surface orientation and texture are U
eliminated. In some places, such as near the geodesic sphere's boundary, the
surface slope alone is large enough to yield a depth discontinuity.

Another representative image-this time a real image-is shown in Figure 5 I
where a stereo algorithm produced the sparse depth data. The right image
from the stereo pair appears on the upper left of Figure 5. This scene consists
of a tall stack of newspapers and a small box or carton. The stereo depth
data and the reconstructed surface are not shown. Once again we consider
two cases, depending on whether or not the intensity edges are utilized.
Without the intensity edges, as with the synthetic stereo results, the depth U
discontinuities are poorly positioned and ragged. However, with the intensity
edges (upper right of Figure 5), the discontinuities on the lower right agree
reasonably well with the object boundaries.

For these stereo image results, a few difficulties are worth mentioning.
A large depth discontinuity along the top left of the newspaper boundary
is not found. The stereo algorithm produced very poor depth data at this
location and positioned the depth change roughly 5 pixels above the news-
paper intensity edge used by the MRF process. Also the small box's shadow
yielded a small disparity that created a depth discontinuity. The box itself
also had a small disparity so that modifying MRF parameters to eliminate
the shadow discontinuity would have eliminated the box's discontinuity. This
sort of variability is inevitable until a reasonable method for local parameter
estimation is developed.

Situations can arise wherein discontinuity detection is hampered when the I
intensity edge sites do not coincide with the sites at which external depth
data are provided. Figure 6 displays a possibility where a depth discontinuity

should form between features A-i and A-2 inclusive. However, the discon-
tinuity can only form on the intensity edge at B-1 and, because of depth
filling and smoothing, the discontinuity may be washed out. The washing
out depends primarily on the depth difference, the separation between edges
A-1 and A-2 and the smoothing parameters. If edge B-1 were on A-1 or
A-2, then the discontinuity could form readily. One approach to avoid this I
coincidence problem is to project a cone of influence about the intensity edge

I
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I Figure 6: The disparities at edges A-1 and A-2 suggest that a depth discon-
tinuity should be formed somewhere between A-1 and A-2. Yet, because of
depth process smoothing, the depth difference at intensity edge B-1 may be
too small to support a discontinuity. No discontinuity will form due to this
'misalignment' of edges.

I location. Then the discontinuities could form not only at the intensity edges
but also for one, two or more pixels on either side of the edge. This has
the disadvantage of leading to somewhat poorly localized and ragged edges.
Straightness of the resulting line process is enforced locally by the intrinsic
prior of the line process when the cone of influence is no larger than the
line process neighborhood. Another approach, used here, was to avoid the
washing out by an appropriate selection of the coupling parameters. More
work must be done in this area.

5 Coupling Intensity Edges to Sparse Mo-
tion Data

The simplicity of limiting discontinuities to a subset of intensity edges im-
mediately suggests its use for other vision modules. The same principles
employed for the stereo depth application have been utilized on motion data.f As with depths, motion fields both from synthetic data and a feature-based
motion algorithm have been used to identify motion discontinuities and to
smooth and fill the sparse motion field. The difference is that motion is a
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vector field: depth is not.
The MRF energy of equation 7 is modified by replacing the random field

variable, F, by a vector random field, R. Likewise, the external field, G,
becomes a vector field, N. The MRF energy is:

U,(xjy) = czy,IM, - .N,12 + ..(I _ 1m)nR. _ ffj2j e nn I

E [3UC(1i) + 3.3(1 - (8i),i])

where R = ui. + vi with a similar definition for N and where IM, - RI,2 I
(u, - uj)2 + (vi - v,)2 . The input field N contains the two components of
the optical flow; the output is M or equivalently, (u,, vi) for all lattice sites i.
With this energy formulation, motion field direction discontinuities are not
identified, only magnitude discontinuities are marked.

A specialized motion algorithm, such as Horn and Schunk's[12], can be
used to compute the motion field for input to the MRF. The motion data
employed here derive from a parallel algorithm[14] that provides match scores
much like the previously used stereo algorithm. Match scores provide a local
measure of trust for the motion data but are not utilized here. Rather than
splitting the problem into early and middle vision parcels, an alternative
approach uses the MRF machinery to compute the motion field in addition
to segmenting the images[201.

Figure 7 illustrates some results on a simple synthetic motion sequence.
The image contains a white square with a small grey texture marking moving
diagonaily across a grey and black background. The motion field is non-
zero only on the white square and its texture marking where both x and
y components exist. Roughly 5% of the image motion data is input to the
MRF. The bottom half of figure 7 shows the motion discontinuities identified
both with and without intensity edge information. Again, the intensity edges
significantly enhance the localization of "nice" motion discontinuities.
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Figure 7: The MRF process and its result on synthetic motion data. Motion
data exists at only 5 percent of the image pixels.
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6 Discussion

6.1 Central role of intensity edges

The results presented here support the idea that intensity edges can be used
as the primary cue to help detect, complete and precisely locate the discon-
tinuities in the other processes such as depth, motion, texture and color. As
we mentioned earlier, the reason for this is that discontinuities in depth, sur-
face orientation, motion, texture and color typically originate large gradients
in the image intensity, i.e. edges. Texture boundaries, for instance, can be
synthesized without any intensity edge; it is sufficient to look around to con-
vince ourselves that in the real world most of the texture boundaries occur
together with an intensity edge. The same is true for motion discontinuities.
Color boundaries also correspond to brightness boundaries (isoluminant bor-
ders exist only in the psychophysics lab!). In addition intensity edges can be
better localized than motion, depth, texture and color discontinuities. The I
case of texture is especially clear: the uncertainty in the location of texture
boundaries is no less than the size of the basic elements of texture, called
textons(261 and usually several times as much. In most cases stereo can- I
not provide precise depth discontinuities because of occlusions. Color is in
a similar situation because of the coarse scale at which it is computed (the
low resolution is imposed by the low signal to noise ratio and the desired
insensitivity to small surface markings).

Psychophysics also suggests that intensity information has a privileged
role relative to other cues. Cavanagh[5] has shown that only intensity edges
can support subjective contours and shadow interpretation. Furthermore,
discontinuitie portrayed through cues besides intensity edges, are more dif-
ficult to see at the level of recognition.

6.2 Open problems in the approach I
The preliminary results obtained by integrating intensity edges with depth
and motion data are encouraging, as the figures show. There are, however, I
many open questions that have to be answered before our theory can be
regarded as a serious first step towards understanding visual integration.
First, there is the question of the overall organization of the integration I
stage, the nature of the interactions and the couplings between the different
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I
cues. There are also more specific questions about our technique of visual
integration and discontinuity detection.

6.2.1 The Structure of Visual Integration

The scheme sketched in figure 8 is a preliminary suggestion for the struc-
ture of visual integration. It is close in spirit to the ideas about intrinsic
images proposed by Barrow and Tennenbaum[1]. They did not, however,
have the powerful theory of coupled MRF models to implement their ideas.

Information about the image intensity has a primary role - intensity edges

help the line processes associated with color, texture, motion and depth.
Depth itself has also a special role - in a sense, it is the main output of
the whole system. Motion, texture and color are coupled to depth. They
may not be directly coupled to each other. Notice that the main couplings
are through the line processes, according to the principles outlined in the
introduction. Notice also that local estimates of reliability may be used to
control locally the strength of the coupling: we have seen earlier that in the
MRF model the coupling between depth and its discontinuities is controlledI2by the parameter a which is inversely proportional to a,.

The line processes may receive data from early algorithms - at this point it
is an open question how. In the present implementation the intensity edges
are totally driven by external data provided by the Canny edge detector
whereas depth and motion do not get external information about disconti-
nuities in depth or motion.

The intensity edges are also coupled with a higher level field that favors
configurations of the subjective contour type, providing completion of lines
and collinearity on a more global basis than the neighborhood of the line
processf22]. The depth line process is coupled with another high-level field
that provides the correct constraints on the interactions between contours of
overlapping objects. A T junction is a clue to occlusion by one of the two
surfaces bounded by it; an X intersection indicates that one of the surfaces
may be transparent. The high-level features couple these configurations of
the line process to the appropriate states of the depth process. If no values
are locally available, default values for in front and behind are given to the

depth process.
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Figure 8: The organization of the integration stage. Each of the processes is I
coupled to its line process. Intensity data feed into the motion, color, texture
and depth line processes. The line processes are not hidden processes: they
may also receive data from specialized discontinuity detectors. The intensity
line process gets input data from Canny edges. It is coupled to a higher level
field which implements constraints of line continuation and collinearity on a
more global basis than the neighborhood system of the line process. The line
process associated with the depth process is also coupled to a higher level I
field which implements the appropriate constraints underlying occlusions of
surfaces. The plausibility of interactions between motion, texture and color
is an open question. 25
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6.2.2 Detailed Questions

Other open questions are: integration of additional t.isual cues, local I's. global
,o,?traints on the line process. tolerance in registration. multiresolution fields.

approximatice algorithms and neural implementations and learning of param-
eters froin Czamples.

SIrtegration of additional visual cues As figure 3 shows, we plan to inte-
grate other visual cues with stereo, motion and intensity data. In particular.
we will include texture and color. Because texture boundaries usually depend
on changes of material or sharp changes in surface orientation, they could
be used to support the line processes in the depth and motion modules. For
color the goal is to find boundaries that delineate regions of constant albedo
(at a coarse resolution, since small surface markings should not be -seen" at
this stage). As in the case of depth and motion. intensity edges play a critical

role for these two additional visual modules. Hurlbert and Poggio (see 21')
have sketched a possible scheme for coupling albedo with intensity edges.

It is important to notice that the combination of several visual cues not
only allows reinforcemen' of evidence for. say. a depth discontinuity, but also
achieves a classification of an intensity edge in terms of its underlying physical
cause: for instance, whether it is due to a shadow or a depth discontinuity.
Clearly. psychophysics can give useful indications of which interactions are
important in the human visual system.

Local versus global constraints on the line process The line process
jVrovides a means for imposing important physical constraints on the disconti-

nuities such as: continuity, relative spatial isolation and possibly collinearity.
These constraints are enforced by using appropriate cliques and associated
energy values. However, in our experience with Markov Random Field mod-
els applied to real data, a problem has emerged with the use of the line
process. In many cases the property of collinearity that can be enforced in
this way remains too local: discontinuities tend to be too jagged and some-

times even broken when integration with intensity edges is not used. How
can one enforce the property of continuity or simply collinearity over larger
distances within the MRF framework? The basic idea that we have begun
to explore is to have a higher-level MRF that consists of "features", such as

I
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straight Lines of different orientations, with its prior probability distribution,
coupled (bidirectionally) with the line process lattice (see figure 8).

Tolerance in registration When data from different cues are combined,
say from intensity and from stereo, they must be registered. Spatial coinci-
dence is the main constraint exploited here. In general, however, one cannot U
expect that discontinuities in depth and intensity will always have exactly
the same location. Because of errors in the early vision processes, effects of
filtering, photometric effects and so on, depth discontinuities may be offset I
by one or more pixels from intensity edges. To deal with this registration
problem the cone ot influence might be useful, in which the intensity edges
facilitate (or don't veto) the formation of depth discontinuities. The cone of
influence size should be on the order of the line process neighborhood. In this
way the line process constraints will ensure collinearity within the cone-of-
influence. Again, important information will come from psychophysics: we
expect to learn how a':znment of, for instance, intensity edges with depth
discontinuities affects human vision.

Learning parameters from examples A critical problem in using MRFs
is the problem of parameter estimation The performance of the scheme
depends critically on the natural temperature of the field, the potentials
associated with the clique configurations, the coupling between the latwices,
and so on. Parameter estimation should provide estimates for these factors; I
possibly by learning from a set of examples.

Does integration influence early vision modules? In our computa- I
tional approach to integration we have tacitly assumed that information flows
from the early vision modules to the integraton stage - the coupled MRF
system - but not backwards. The output of say, stereo, is modified by the
outputs of other modules at the level of the MRFs but the stereo process
itself - the matching, for instance - is not affected. The decision to neglect

feedback interactions, from the integration stage to the early processes, in the
present version of our theory is mainly due to reasons of simplicity. Without

modifying our scheme in an essential way, it is easy to incorporate backward
effects from the integration stage by assuming that the whole process from
early vision algorithms to the integration stage can be controlled by a '%igher-
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order system taking into account higher-level goals and the available results.
If recognition is the goal, for instance, the current results of the recognition
operation on the integrated information can control which early processes to
apply, where, and how (i.e. which parameters to use). In this case, one may
hope to develop a useful theory of integration without worrying at first about
the problem of feedback.

A different possibility is that interactions between the integration stage
and the early vision modules are an essential part of any integration theory
and cannot be neglected even in a first-order approximation. In an extreme
case one might not be able to separate the integration stage usefully from
the early vision modules and even the modules one from another.

In principle, this is possible. The algorithms for the early processes can
be regarded in several cases as MRF,- themselves (regularization algorithms
are special cases of MRFs[2,23]). Thus our coupling schemes for integration
can be extended to couple the early processes. In practice, we expect that
parameter estimation may become a very serious problem once the early
vision processes are tightly coupled.

Hardware implementations As discussed elsewhere[19,21] the coupled
MRF models used here can be implemented efficiently in mixed digital and
analog hybrid networks. It is interesting that, the interaction underlying
coupling between fields is of the type of a multiplication, logical-and or veto
operation. These operations have some intriguing possible implementations
in terms of the properties of synapses.

While it is certainly possible to implement the same mixed deterministic
and stochastic algorithms described here in, say, VLSI technologies, it is
also interesting to explore ,.pproximative deterministic algorithms that may
be simpler and more efficient. Marroquin[16] has provided an encouraging
initial anal: 3is along with estimates of convergence properties.
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1 Chapter I

I Data Level Parallelism
I

1.1 Parallelism in the World Around Us

Whenever many things happen at once, parallelism is at work. It is at work for one of
two reasons: either because someone is in a hurry or because it is the natural course of
events. If, for example, many people are working at once to compose a song, it is because

someone is in a hurry. Music is a naturally sequential process. Physical phenomena, on
the other hand, are almost always parallel. The wind in a wind tunnel does not blow
over one square centimeter of an automobile body at a time. It blows across the whole
frame at once, showing the engineers how the flow in one section interacts with the flow in
another. If we simulate the wind in parallel, the results come faster as a natural consequence.
The parallelism is being utilized, but it is not being artificially imposed. Other examples
of fundamentally parallel phenomena include vision processing, information retrieval, and
many types of mathematical operations.

U1.2 Parallelism in Computer Sy "ems

The same two motivations, doing things in a hurry and doing things more naturally, also
motivate computer architects. Until recently, those architects who are focused on greater
speed have obtained it from faster circuitry. Making the electronics twice as fast, or the
memory twice as big, has traditionally been a cost-effective way to double the performance
of a single-processor computer system. But now these gains have become much harder to
achieve. Limits to circuit speed have been reached. So designers who are solely focused on
speed are now seeking to inject parallelism into their designs. If two computers of traditional
architecture can operate in parallel, the overall speed of the system can double.

There is, however, another starting point for the design process. Computer architectsI1
I
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can go back to the problems themselves and understand the parallelism that has been there
all along. Having understood it, they can build a system that exploits it directly. The first
benefit of this approach is simplicity. A computer that fits the problems it solves is easier to
use and program than a computer that doesn't. And it is also faster. Systems that couple
to the inherent structure of a problem mine a deeper vein of parallelism. For this reason,
they can dramatically outperform systems whose superficial performance specifications seem
superior. When parallelism is imposed on a problem, a speed-up of ten is considered good.
When inherent parallelism is exploited, speed-ups of 1000 are commonplace.

Some applications benefit much more than others. While certain problems do not have
a large amount of parallelism, there is a large and growing body of important problems that I
do. For these applications the method of designing the computer around the inherent paral-
lelism of the problem is proving to be outstandingly valuable. This approach is called "data
level parallelism." The remaining sections of this report describe data level parallelism and I
its application to three very different computing problems. The implementation examples
use the Connection Machine system, the first data level parallel computer available on the
commercial market. (See reference [8] for further discussion of the Connection Machine
system)

1.3 Two Styles of Computer Parallelism I
All computer programs consist of a sequence of instructions (the control sequence) and a
sequence of data iqements. Large programs have tens of thousands of instructions operating
on tens of thousands, or even millions of data elements. Parallelism exists in both places.
Many of the instructions in the control sequence are independent; they may in fact be exe-
cuted in parallel by multiple processors. This approach is called 'control level parallelism." I
On the other hand, large numbers of the data elements are also independent; operations on
these data elements may be carried out in parallel by multiple processors. This approach,
as mentioned in the previous section, is called "data level parallelism." Each approach has I
its strengths and limitations. In particular, data ievel parallelism works best on problems
with large amounts of data. Small data structures generally do lot have enough inherent
parallelism at the data level. When the ratio of program to data is high, it is often more I
efficient to use control level parallelism. But control level parallelism requires the user to
break up the program and then maintain control and synchronization of the pieces.

1.4 The Connection Machine Data Level Parallel Computer

The Connection Machine computer from Thinking Machines Corporation is the first system
to implement data level parallelism in a general purpose way. Since the computer :s designed I

I
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around the structure of real world problems, the best way to understand the Connection
Machine architecture is to follow its use in solving an actual problem. A VLSI simulation
example will be used for that purpose. In VLSI simulation, the computer is used to verify
a circuit design before it is released to be manufactured. The Connection Machine system
provides a very direct way to perform this simulation. Each transistor in the circuit is
simulated by an individual processor in the system. The chapters which follow explain
three more examples in much greater detail.

1.4.1 Program Execution

Data level parallelism uses a single control sequence, or program, and executes it one step at
a time, just as it is done on a traditional computer. The Connection Machine system utilizes
a standard architecture fiont end computer for this purpose. All programs are stored on
the front end machine. Its operating system supports program development, networking,
and low speed I/O. The front end computer has access to all the memory in the system,
albeit one data element at a time because it is a serial computer.

All Connection Machine program execution is controlled by the front end system. A
Connection Machine program has two kinds of instructions in it: those that operate on one
data element and those that operate on a whole data set at once. Any single-data-element
instructions are executed directly by the front end; that is what it is good at. The important
instructions, those that operate on the whole data set at once, are passed to the Connection
Machine hardware for execution.

In the VLSI simulation example, the important instructions are the ones which tell
each processor to step through its individual transistor simulation process. Each processor
executes the same sequence of instructions, but applies them to its own data, the data that
describes the voltage, current, conductance, and charge of its transistor at that time step
of the simulation.

I 1.4.2 The Connection Machine Processors

In order to operate on the whole data set at once, the Connection Machine system has
a distinct processor for each data element. The system implements a network of 65,536
individual computers, each with its own 4096 bits of memory. The data that describe
the problem are stored in the individual processors' memories. During program execution,f whenever the front end encounters an instruction which applies to all the data at once,
it passes the instruction across an interface to the Connection Machine hardware. The
instruction is broadcast to all 65,536 processors, which execute it in parallel.

Applications problems need not have exactly 65,536 data items. If there are fewer,
the system temporarily switches off the processors that are not needed. If there are more
problem elements, the Connection Machine hardware operates in virtual processor mode.

I
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4 CHAPTER 1. DATA LEVEL PARALLELISM I

Each physical processor simulates multiple processors, each with a smaller memory. Virtual
processing is a standard, and transparent, feature of the system. A Connection Machine
system can easily support up to a million virtual processors. In general, a problem should
have between ten thousand and a million data elements to be appropriate for the Connection I
Machine system.

1.4.3 Connection Machine I/O I
Since the front end system has access to all Connection Machine memory, it can load data
into that memory and read it back out again. For small amounts of data, this is a practical I
approach, but for large amounts it is too slow. A separate 500-megabit-per-second I/O bus
is used instead. This bus is used for disk swapping, image transfer, and other operations
which exceed the capacity of the front end.

1.5 Communications: The Key to Data Level Parallelism

Large numbers of individual processors are necessary for data level parallelism, but by
themselves they are not enough. After all, there is more to a VLSI circuit than individual
transistors. A circuit is made up of transistors connected by wires. Similarly, there is
more to a Connection Machine system than just processors. A Connection Machine system
is made up of processors interconnected by a massive inter-connection system called the
router.

The router allows any processor to establish a link to any other processor. In the case of
the VLSI simulation example, the links between processors exactly match the wiring pattern
between the transistors. Each processor computes the state of an individual transistor
and communicates that state to the other processors (transistors) it is connected to. All
Connection Machine processors may send and receive messages simultaneously. The router
has an overall capacity of three billion bits per second.

It is part of the reality of the world we live in that many things happen at once, in
parallel. It is part of the beauty of the world we live in that these many things connect and
interact in a variety of patterns. Looking at the whole problem at once requires a computer
that combines the ability to operate in parallel with the ability to interconnect.

Since the structure of each problem is different, the interconnection pattern of the com-
puter must be flexible. All linkages between Connection Machine processors are established
in software. Therefore, the system can configure its processors in a rectangular grid for one
problem and then into a semantic network for the next. Rings, trees, and butterflies are
other commonly used topologies. The chapter on hardware describes router operation in
greater detail. I

I
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1.6 Connection Machine Application Examples

Each of chapters 2, 3, and 4 describes a Connection Machine example in detail. First
the algorithm is described, and then the actual program that implements this algorithm
is presented and discussed. It is not necessary to study the program to appreciate the
simplicity of the overall approach. Many readers will want to skip over these details. The
third example, contour mapping, is quite sophisticated. Hence the program for this example
is more complex than the two that precede it.

The initial Connection Machine languages are C* and *Lisp. C* is an extension of C
and is appropriate for a wide range of general purpose applications. *Lisp is an extension of
Lisp. Lisp, while less well known than C, is also an appropriate language for a wide variety
of applications. Its primary use, however, has been in the field of artificial intelligence.
Chapters 5 and 6 provide an introduction to these languages.

I
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t Chapter 2

I Document Retrieval
I

There is too much to read. The written material for almost every discipline grows much
faster than any one person can read it. Computers have not provided much relief to date.
Now data level parallelism provides the computing power to implement significantly better
solutions to the document retrieval problem. These solutions are more natural, so they
require less user training. And they are much more accurate, so they give the user much
greater confidence in the results.

2.1 Accessing Computer Data Bases

There are a number of systems today that provide on-line access to text information, but
they perform poorly because they rely on a "keyword" mechanism for finding documents.
The premise of a keyword system is that the relevance of a whole document can be deter-
mined by the presence or absence of a few individual words. Users enter one or more "key-
words" or labels that they feel capture the sense of 1. ' .:%ormation needed. All documents

which either contain these words or have been indc, -i .xder these words are retrieved.
Those that do not are ignored. Even with refinement., auch as "Find all occurrences of
'New England Patriots' within ten words of 'Superbowl'," a keyword search generally tends
to either find too many documents for the user to cope with, or too few for the user to find
useful. It is a guessing game, with the user trying to imagine the most fruitful search terms.

Not all relevant documents contain the one particular word that the user chose, because
writers use language differently. A search for documents containing the word "chips" may
find five relevant documents, but miss ten others that were indexed under "integrated
circuits" or "VLSI.3 Since the search yields only one third of the relevant documents, it
would be considered to have a recall of 33%. Worse yet, the five relevant documents might
be returned mixed into twenty other documents describing cookies or paint or other subjects

I.I7
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8 CHAPTER 2. DOCUMENT RETRIEVAL I
where the word "chips" appears. Such a search would be considered to have a precision of
20%. Recent published testing has shown that recall results of as little as 20% are common
with keyword based systems [1].

In short, keyword-based systems are very good at finding one or two relevant documents
quickly. What they are poor at is producing a refined result with high recall and high
precision. The Connection Machine document retrieval system provides a very powerful
way for doing complete searches. It starts out using a keyword approach, but once the U
first relevant document is found, the whole approach changes. The user proceeds by simply
pointing to one or more relevant documents and saying, in effect, "Find me all the documents
in the database that are on the same subjects as this one.' A document that has been
identified as relevant by the user is referred to here as a "good document."

2.2 Algorithms for Document Retrieval m

Data level parallelism makes massive document comparisons simple. The basic idea is
this: a database of documents is stored in the Connection Machine system, one or more I
documents per processor. Once the first good document is found, it is used to form a search
pattern. The search pattern contains all the content words of the document. The host
machine broadcasts the words in the pattern to all the processors at once. Each processor I
checks to see if its document has the word. If it does, it increases the score for its document.
When the entire pattern has been broadcast, the document that most closely matches the
pattern will have the highest score, and can be presented first to the user. I

The algorithm is simple to program because it takes advantage of innate characteristics
of documents rather than programming tricks and second guessing. Every document is,
in effect, a thesaurus of its subject matter. A high percentage of the synonyms of each I
topic appear because writers work to avoid repetition. In addition, variants of each word
(such as plural, singular, and possessive forms), and semantically related terms also appear
among the words in a particular article. Clearly not every synonym, variant, and related i
term will occur in a single article, but many terms will. Each reinforces the connection
between the search pattern and the document. Spurious documents, on the other hand,
will not be reinforced. The word "chip' will appear in an article about cookies, but "VLSI" i
and "integrated circuit" simply will not. In the overall scoring, truly useful documents are
reliably separated from random matches. (See figures 2.1 and 2.2.)

2.3 Database Loading on the Connection Machine System

A document database may be constructed from sources of text such as wire services, elec- I
tronic mail, and other electronic databases. For this description it is important to draw a I

I
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i
I
i

EPA

Figure 2.1: Documents on the same aubject have a high overlap of vocabulary.

I

integratedIcircuit retail

I
i Figure 2.2: Documents on different aubjecta have low overlap of vocabulary.
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10 CHAPTER 2. DOCUMENT RETRIEVAL I

distinction between source documents and content kernels. A source document contains the
full actual text of a particular article, book, letter, or report, and is stored on the front-end's
disk. A content kernel is a compressed form of the source document that encodes just the
important words and phrases. It omits the commonplace words. Content kernels are stored
in the memory of Connection Machine system.

The content kernel is produced automatically from the source document. First, the
source document is processed by a Thinking Machines document indexer program that
marks the most significant terms in the text. Next hese terms are encoded into a bit-
vector data structure, using a method called "surrogate coding." Surrogate coding, which
is sometimes referred to as a "hash coding" method, allows the content kernel to be stored
more compactly. It also speeds up the search process. In surrogate coding, each term in
the content kernel is mapped into ten different bits in a 1024-bit vector. The ten selected
bits in the vector are set to one to indicate the presence of the word in the document. In a
content kernel of 30 terms, the process of surrogate coding ends up marking about a third
of the bits as ones.

The source document in its original form is available for retrieval and presentation to
the user when needed. The location of the original document on the system disk is stored
with the content kernel.

Each segment of the content kernel is made up of the following fields:

*score* is used by the document lookup program to accumulate the ranking of each
content kernel in the database according to how closely the content kernel matches
the user's search pattern. Each time a match is found, *score* is updated.

*document-id* contains a reference to the original source document that this content
kernel was derived from. When a content kernel is selected from the database lookup, I
the user is shown the source document referred to by this index.

*kernel* is a table of the surrogate-coded bit-vector encoding.

The necessary declarations for these fields are as follows. (In this chapter only, all of the Icode is presented twice, first in the *Lisp language and then in the C* language, to make itl

easy to compare the two languages. Because the characters * and ? may not appear in C*
identifiers, such *Lisp names as *score* and word-appears? are rendered in C* simply as
score and word-appears.) 1
*;; Declarations for the *Lisp version.

(defconstant table-size 1024) I
(defconstant hash-size 10) I

I
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I 2.4. DOCUMENT LOOKUP ON THE CONNECTION MACHINE SYSTEM 11

(*defvar *score*)
(*defvar *document-id*)

(*defvar *kernel*)

/* Declarations for the C* version. */

#define TABLE-SIZE 1024
#define HASHSIZE 10

poly unsigned score, documentid;

fpoly bit kernel[TABLE_SIZE];

2.4 Document Lookup on the Connection Machine System

During the first stage of document lookup, the user lists a set of terms to be used to search
the database, and receives back an ordered list of documents that contain all or some of
those terms. The user then points to a document which is relevant, and from this document
an overall search pattern of content-bearing words is assembled. The search pattern is simply
a list of these words, with weights assigned to each word. The weight assigned to a word is
inversely proportional to its frequency in the database (for example, "platinum" appears in
the database less frequently than "gold,* and therefore has a higher weight associated with
it). This weighting mechanism ensures that uncommon words have more of an influence
than common words over which content kernels get selected during the document lookup
process.

Next, the search pattern is broadcast to all processors in the Connection Machine system.

The same mechanism that is used to code each word in the content kernel as a series of bits
is applied to the words in the search pattern. For each word in the search pattern a set of
ten bit indices is broadcast. All content kernels that have these same ten bits set will have

the weight of that word added into their *score* field. (It is possible that all ten bits for
a word might happen to be set on account of other words even though that word doesn't
really appear in the source document. Such an accident will result in a "false hit" on that
word. However, for two reasons, this will not seriously affect the results of the lookup.
First, the probability of a false hit is small: (') 0 , or less than one in 50,000. Second, a
false hit will be only one of many terms contributing to the score, and so will have only a
small effect even when it does occur.)

The following code is used to broadcast one search pattern word to all the processorsI
I
I



12 CHAPTER 2. DOCUMENT RETRIEVAL I
in the system, which check their content kernels and add the value of weight into their
*score* if it contains the word. The word is represented by a list of ten bit locations

(bit-locs).

;;; *Lisp code for testing the presence of a single word.

(*defun increment-score-if-word-appears (bit-locs word-weight)

(*let ((word-appears? t!))

(dolist (bit bit-locs)
(*set word-appears?

(and1!1 word-appears?
(noti! (zerop!! (load-byte!! *kernel* (! bit) ( 1)))))))

(*if word-appears?

(*set *score* (+If *score* (11 word-weight))))))

/* C* code for testing the presence of a single word. */ I
poly void increment-score-if-all-bits-set

(mono unsigned word_bitposition[HASHSIZE]. mono int weight) {
mono J;
poly bit word-appears = 1;

for ( - 0; j < HASHSIZE; j++)
word-appears - kernel (wordbitposition[JJ];

score +- weight;

The main search program simply calls this routine once for each keyword in the keyword m
list.

2.5 Retrieving the Highest Scoring Documents I
The code that follows is used to retrieve the *document-id* for each of the highest scoring
content kernels in the database. The program returns a list of *document-id*s for the
content kernels with the highest scores. The program first retrieves the *document-id* for
the highest score, then the next highest score, etc., until a list of length document-count is
retrieved. The already-retrieved? flag is set once a processor has had its *document-id*
retrieved so it will not be retrieved again. I

I
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1 2.6. TIMING AND PERFORMANCE 13

;;; *Lisp cods for retrieving documents in order, highest score first.

(*defun retrieve-best-documents

(let ((top-documents-list nil))
(*let ((already-retrieved? nil))

(dotiaes (i document-count)
(*when (notI! already-retrieved?)

(*when (=!! *score* (*max *score*))
(*let ((next-highest-document (*min (self-address!!))))

(setq top-documents-list

(append top-documents-list
(list (pref *document-id* next-highest-document))))

(setf (pref already-retrieved? next-highest-document) t))))))
top-documents-list))

I /* C* code for retrieving documents in order, highest score first. */

poly void retrieve-best-documents
(mono document-count. mono unsigned *documentid-array)

poly bit already-retrieved - 0;
mono i:

for (i - 0; i < document.count; i++) {
if (lalreadyretrieved) {

if (score a- (><a score)) {
processor *next.highest.docuent - (<> this);
documentidarray[iJ a next.highest-document->document-id;
next.highest.document->already-retrieved - 1;

}

I 2.6 Timing and Performance

A production level version of the algorithms described above has been implemented and
extensively tested on the Connection Machine system. Performance studies have been done
on a database of 15,000 newswire articles, which constitute 40 megabytes of text. AnI

I
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14 CHAPTER 2. DOCUMENT RETRIEVAL m

automatic indexing system, selects the content kernels for each document. The content m
kernels are about one third of the original size of the text. Surrogate coding compresses the
data by another factor of about two. In the system currently in use, the kernels are encoded
into as many 1024-bit vectors as are needed at 30 terms per vector. For a long document I
several vectors are used; additional code, not shown above, is needed to chain the vectors
together and combine the results.

Using this encoding, the Connection Machine system is able to retrieve the 20 nearest I
documents to a 200-word search pattern from a data base of 160 MBytes in about 50
milliseconds. (160 MBytes is equivalent to an entire year of news from a typical newswire.)
In this time the Connect;on Machine system performs approximately 200 million operations I
for an effective execution speed of 6,000 Mips.

2.7 Summary and Implications I
The program is brief because the algorithm is simple. The Connection Machine system is
able to match the user's needs directly. It is powerful enough to carry out the algorithm in I
a straightforward way. The user wants to say to the database "All documents on the same
subject as this one, line up in order here." That is exactly the service that the Connection
Machine system provides for the user. It broadcasts the contents of the selected document I
to tens of thousands of processors at once. Each processor decides in parallel how similar
its documents are. Then the most similar ones are sorted and presented to the user.

Even larger databases can use the same technique with two enhancements. The first I
enhancement is the use of a very high-speed paging disk, which allows larger numbers of
content kernels to be swapped into the system for searching. The second enhancement is
the use of cluster analysis. When the system has many documents on the same subject, it I
need not store all their content kernels individually. It can store one for the whole cluster,
then retrieve the full set of related documents when needed. A single document may, of

course, participate in more than one cluster. As the total database size grows, the size of I
the average cluster grows with it, making this a particularly appropriate technique for large
scale databases. The addition of paging and clustering extends the algorithm described
above to the 10-gigabyte range and beyond.

I
I
I
I
I



I
U

IChapter 3
I

Fluid Dynamics

Fluid flow simulation is a key problem in many technological applications. From the flow
of air over an airplane wing to mixing in a combustion chamber, the problem is to predict
the performance of a design without building and testing a physical model.

Until recently, fluid flow models were based almost exclusively on partial differential
equations, typically the Navier-Stokes equations or approximations to them. These equa-
tions are not generally solvable by normal analytical methods. Numerical approximation
techniques, such as finite difference methods and finite element methods, have been devel-
oped to solve these partial differential equations. All of these methods involve large numbers
of floating point operations which require great amounts of fast memory. In addition, ob-
structions to the flow must usually be mathematically simple shapes.

IRecent physics research has suggested that it is possible to make intrinsically discrete
models of fluids. The fluids are made up of idealized molecules that move according to very
simple rules, much simpler than the Navier-Stokes equations. The models are examples of
cellular automata and are partic'JIarly well-suited to simulation on the Connection Machine.
Cellular automata are systems composed of many cells, each cell having a small number
of possible states. The states of all cells are simultaneously updated at each "tick" of a
clock according to a simple set of rules that are applied to each cell. This approach involves
only simple logical operations and does not require floating point arithmetic. It allows for
all obstructions regardless of their shape. In addition, mathematical methods can be used
to show that the results of such simulations agree with the results that would be obtained
from the Navier-Stokes equations.

I15
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16 CHAPTER 3. FLUID DYNAMICS I

3.1 The Method of Discrete Simulation

Discrete simulation is used to model fluid flow on the Connection Machine system. The
technique involves six key elements: particles, cells, time steps, states, obstacles, and in-
teraction rules. Particles correspond to molecules of a fluid. A particle has a speed and a
direction which determine how it moves. A time step is a "tick" of a clock that synchronizes
the movement of particles. During each time step, particles move one cell in the direction

that they are heading. A cell is a specific place in the overall region that is being observed.
The region is completely filled with cells. Particles can move into and out of each cell during
each Lime step. A state is a value assigned to each cell that indicates the number of particles
within the cell, and in which directions they are heading. An obstacle is a set of special i
cells that obstruct the natural movement of particles. The interaction rules determine the
movement of each particle when it shares a cell with one or more other particles. This
movement is carried out by updating the state of the cells to reflect the new positions of
the particles within the region.

A discrete simulation typically uses fixed cells. The cells never move or change during
the simulation. Particles are completely in one cell during a time step, and move completely
into the next cell (determined by the interaction rules) during the next time step. During
each time step, every cell gathers data about particles heading in its direction from each of
its neighboring cells. Based on the interaction rules, each cell determines the direction of
its newly acquired particles and updates its own state.

A simulation designer can choose the cell topology and the interaction rules. The cell
topology determines how many sides a cell has, and therefore, the directions by which i
particles may er.ter and exit. The simulation designer also determines the number of cells
in the region being observed, and the average number of particles in each cell. Cellular
automata theory provides the background for the simulation designer's decisions. It suggests
that a simple cell topology, a huge number of cells and particles, and simple, local interaction
rules are the most likely to be successful.

3.2 A Discrete Simulation of Fluid Flow

Thinking 1" 1' nes is currently simulating fluid flow using a two-dimensional region that is I
divided i', '3,000,000 hexagonal cells. Each cell is assigned to its own Connection Machine
procemo ,g g the virtual processor mechanism). The hexagonal mesh is a simple topology
that giv s the .'.domness that is required on a microscopic level to get correct results on i
the ma.rosc' K t- Level.

One c-f the fundamental reasons for computer simulation of fluid flow is to observe the
behavior of a fluid as it flows past an obstacle. In the discrete model, obstacles are groups
of cells that particles can not travel through. When a particle approaches an obstacle cell, I

I
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I 3.2. A DISCRETE SIMULATION OF FLUID FLOW 17

it bounces off during the next time step. In order to observe the behavior of a fluid, tens
of millions of microscopic particle interactions are simulated. Each individual particle's
path through the cells and off of the obstacle cells appears almost random, just as in real
fluids. However, when all of the particles' paths are considered, the overall behavior of themodel is consistent with the way that real fluids behave. (See references [4,7,14] for further
discussion of the use of cellular automata to model fluid flow.)

Individual particles can enter or exit through any of the six sides of each cell. A cell
may cont.in a maximum of one particle heading in each of the six possible directions during
a given time step (and so the total number of particles per cell per time step is anywhere
from 0 to 6). A particle that has not collided with another particle during a time step
will continue moving in the same direction during the next time step. (See figure 3.1.)
When particles collide, a simple set of rules determines their new directions, conserving
both momentum and the number of particles.

I I {

tim c I t lm c 2 tim e - 3

Figure 3.1: Unless particles are obstructed by an obstacle, or collide into other particles,
they continue in the same direction.

At each time step, every cell updates its state by checking all of its adjoining cells, or
neighbcrl, for particles that are heading in its direction. All cells then update their ownstates based on the information that they have gathered. In the model currently imple-
mented, there are five situations that cause a particle to change directions: 2-way symmetric
collisions, 3-way symmetric collisions, 3-way asymmetric collisions, 4-way symmetric colli-sions, and collisions with an obstacle cell. (See figure 3.2.)

Although the algorithm is implemented by modeling the individual movements and
collisions of tens of millions of particles at each time step, the behavior of the fluid is observed
by averaging the behavior of all of the particles in the entire region and by analyzing theI

I
I



I

18 CHAPTER 3. FLUID DYNAMICS U,I
'I

Id) (bi()

(d) (e)

Figure 3.2: Situations that cause particles to change directions.
(a) Two-way symmetric: two particles enter a cell from opposite sides. The particles exit
through a different pair of opposite walli. I
(b) Three-way symmetric: three particles enter a cell from non-adjacent sides. Each particle
exits by the side through which it entered.
(c) Three-way asymmetric: three particles enter a cell, two of them from opposite sides.
One particle passes through unobstructed; the other two particles behave as in a two-way
symmetric.

(d) Four-way symmetric: four particles enter a cell, each particle's side is adjacent to only
one other particle's side. Particles behave as in two two-way symmetric collisions (maximum
of one particle exiting per side).
(e) Collisions with an obstacle cell: a particle always leaves an obstacle cell by the side I
through which it entered.

results over many time steps. In a typical simulation, macroscopic results are gathered by I
averaging particles together in groups of 20,000. Although each individual particle has only
one speed and six possible directions, the average of 20,000 particles provides the full range
of possible velocities.

3.3 Implementation on the Connection Machine System I
There are two available ways for the Connection Machine system to implement the con-
nections among the hexagonal cells. It can use the full router, setting up six connections
for each site, one for each adjacent hexagon. Or it can use its grid, which connects four I

I
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adjacent processors directly. The grid network was chosen for this implementation. It is
very fast for small data transfers to nearby processors.

Of course, the grid cannot implement hexagonal connections directly. It connects to
four adjacent processors, not six. Therefore, two of the six connections require two-step
communication (i.e., up one and over one for the diagonal). The simulation program im-
plements this two-step process. Each site can quickly learn the status of its six neighbors
and can determine which ones contain particles that are moving in its direction.

Each cell has only 13 bits associated with it: six bits for incoming state (numbered
0-5), six bits for outgoing state (numbered 0-5), and one bit to indicate whether or not it
is an obstacle. Each of the six incoming state and six outgoing state bits is dedicated to a
particular direction. If a particle is entering or exiting through that direction, then the bit
is set to 1, otherwise it is set to 0. (See figure 3.3.)

BITS 0 1 2 3 4 5
3+ INCOMING 10 10 1 0

OUTGOING 1 0 0  1 0 0

Figure 3.3: Hexagonal cell# with six incoming bits for particle direction and six outgoing bits
for particle direction

I /* A cell state is represented by a six-bit unsigned integer.

which can also be regarded as an array of six individual bits. */

typedef union STATE {unsigned:6 Val; unsigned:1 Bit[6);} state;

/* Each processor in the domain "grid" will contain a cell state
(the outgoing state), another state (the incoming state) used
for temporary purposes in the calculation, and a bit saying
whether or not it is an obstacle cell. */

poly state outgoing-state, incominstate;
poly unsigned:1 obstacle-cell;

I
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/* The following declares the actual grid of processors. */ U
processor fluid-gridARRAYXSIZE] (ARRAYYSIZE];

/* Grid is the C pointer type that corresponds to the above array type. */

typedef processor (*grid) [ARRAYTSIZE];

At each time step, instructions are broadcast that tell each cell how to gather data
about particles heading in ias direction. When the cells poll each of their six neighbors for
information, they formulate their own 6-bit incoming state. For example, a cell would ask
its East neighbor for its outgoing state bit number 3, and would place the answer in its own
incoming state bit number 0. It would then ask its NorthEast neighbor for its outgoing I
state bit number 4 and would place the answer in its own incoming bit number 1. All cells,
in parallel, check the state of all six of their neighboring cells. This extreme data level
parallelism allows for a large amount of data to be collected in a small amount of time.

/* This code is executed within each processor. Outgoing state
bits from six neighbors are gathered and placed within the local I
incoming-state array. Note the use of a C cast expression

((grid)this) to create a self-pointer that has a two-dimensional

array type suitable for double indexing. (This code actually is I
oversimplified in that it does not handle the boundary conditions
for cells on the edge of the grid. Handling these conditions is

a bit tedious but conceptually straightforward.) */

poly void get-neighbors() {
incoming-state.Bit[el - ((grid)this)[ I ][ O .outgoing-state.Bit[31; I
incoming.state. Bit [1] - ((grid)this) [ O1[ 1].outgoing-state. Bit [41;
incoming-state.Bit[2] - ((grid)this)[-1] 1] .outgoing-state.Bit[5];
incoming-state.Bit[31 - ((grid)this) [-1] [ 01. outgoing-state. Bit [0];
incoming-state.Bit[4] - ((grid)this) [ 01 (-1] .outgoing-state.Bit[l;

incoming-state.Bit [5] - ((grid)this) [ 1] [-11. outgoing-state. Bit [21;

Once each cell has determined which particles are entering (by collecting its incoming
state), it updates its outgoing state to reflect the particle interactions. First, all cells that
have their obstacle-bit turned on are instructed to set their outgoing state to be the same as I
their incoming state (since particles that hit an obstacle bounce back in the same direction). I

I
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I 3.4. INTERACTIVE INTERFACE 21

Next, patterns are broadcast that correspond to each of the possible 6-bit incoming states,
followed by the corresponding 6-bit outgoing state. Each cell compares its incoming state
to the pattern being broadcast. When there is a match, the cell updates its outgoing state
accordingly. For example, a cell with an incoming state of 011011 would then have an
outgoing state of 110110 (refer to figure 3.2d).

/* The rule table is indexed by a six-bit incoming-state value
and contains the corresponding outgoing-state values. */

state rule-table [64)

/* Calculate the new outgoing-state for all cells, based on the
incoming-state and the obstacle-cell bit. */

poly void update-state {
if (obstacle-cell)

outgoing-state. Val - incomingstate. Val;

else outgoing.state.Val - rule-table[incoming-state.ValJ .Val;UI
It is important to note that this trivial, non-computational, table look-up is the driving

force of the whole simulation. The Connection Machine system has replaced all of the math-
ematical complexity of the Navier-Stokes equations with this small set of bit-comparison
operations. The simulation is successful because the system can perform this operation on
huge numbers of particles in very short amounts of time. It is an example of the Connection

Machine system being easier to program because it supports a much simpler algorithm.

3.4 Interactive Interface

A typical 'run" of a fluid flow simulation begins by allowing the user to make several
choices. The user typically specifies the average number of particles per cell (density) and

the average speed and direction of the particles (velocity). Technically this means that the
entire region starts out with particles randomly distributed among the cells (based on the
density) and moving in a certain overall direction (based on the average velocity). The user

also selects or draws one or more obstacles and places them somewhere in the region being

observed. All cells that are part of an obstacle have their obstacle bit set. As the simulation
runs, new particles are randomly injected from the edges of the region in order to maintain

the selected density and velocity. Once the model is running, each cell's state is continually

updated, and average results for regions of cells are displayed.I
I
I'



22 CHAPTER 3. FLUID DYNAMICSI

/* This is the main computation loop. At each time step, each
cell fetches state from neighbors and updates its own state;
then the results are displayed. *

poly void fluid-.flow()
for (;;) (

get-.neighborsO; f
update.state 0;
display-.state0;

/* Execution begins here. *

void start-.fluid-.flow()
/* Initialization. *

initiali ze-.rule -table 0;
initialize-.ceI0;
/* Activate all processors in fluid-.grid

and then call the function fluid-.flow. *

0 0 Lf luid-.grid] . f luid-.f low 0;

Figure 3.4: The formation of a fluid flow phenomenon, called a 'vortez street," as fluid
flowse from left to right past a flat plate.I
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I 3.5 Timing and Performance

A production level version of the algorithm described in this chapter has been implemented
and extensively tested on the Connection Machine system. The simulation operates on a
4000 x 4000 grid of cells, typically containing a total of 32 million particles. The Con-
nection Machine system is able to perform one billion cell updates per second. Figure 3.4
shows several displays from a simulation of 100,000 time steps. Each time step includes
approximately 70 logical operations per cell; the simulation therefore required a total of
100 trillion (1014) logical operations. The complete simulation took less than 30 minutes.
Current results are very competitive with state-of-the-art direct numerical simulations of
the full Navier-Stokes equations.

I3.6 Summary and Implications

In addition to providing very accurate simulation of fluid behavior, the Connection Machine
method for simulating fluid flow allows scientists to continually interact with the model.
Any of the user's original choices may be modified during a run of the simulation, without
long delays for new results. Since particles are continually moving through the cells, a new
density or average velocity may be established by adjusting the particles being randomly
injected from the edges. When a new obstacle is added during a run, the obstacle bits in
the appropriate cells are set, and those cells begin to reflect particles. Within less than a
minute (a few thousand time steps), results based on the new selections become apparent
in the displayed flow.

The algorithm for simulating fluid flow on the Connection Machine system is simple. It
overcomes problems formerly associated with computer simulations of fluid flow by using
a discrete simulation that takes advantage of the Connection Machine system's inherent
data level parallelism. During eacb time step, every particle can move in the direction it is
heading, every cell can evaluate its new particles based on collision rules, and every cell can
update its state to reflect the direction of the particles it currently contains. The algorithm
involves a small number of instructions executed over a large amount of data. Since the
Connection Machine system is able to assign a processor to each data element, and to allow
all processors to communicate simultaneously, it has provided the computational power
required to provide the ideal solution to this applications need.

I
I
I
I
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I Chapter 4

I Contour Maps from Stereo Images
I

Human beings have extremely sophisticated and well-developed visual capabilities, which
scientists are just now beginning to understand. Since humans are very good at dealing
with visual data, graphics and image processing provide an excellent opportunity for cre-
ative partnership between people and computers. An example of this partnership is the
widespread use of graphical output for computer applications, such as scientific simula-
tions. The computer does what it does best, computing the results and displaying them in
a picture or a movie. Researchers do what they do best, using their sophisticated visual
system to make qualitative judgements based on the visual information.

In many important computer applications, however, this partnership breaks down.
When the flow of visual data is too large, the human visual system makes mistakes. Of-
ten this is simply because humans get tired and lose their concf.ntration when faced with
very large and monotonous streams of visual data, not because they are trying to extract
information too subtle for current computer science to handle.

I 4.1 Analyzing Aerial Images by Computer

The analysis of detailed aerial images is an area where increased computer processing is
highly desirable. Topographers would like to have the computer partially "digest" the visual
data first, presenting only the essential properties of the images to the human user. In some
cases, they would like to have the computer go even further, drawing abstract conclusions
from raw visual data. Scientific progress in image processing and artificial intelligence
has recently made this kind of information processing possible. However, conventional
computers cannot keep up with the enormous flow of data that these applications present.
Consequently, humans are still doing most of the work in these areas. The partnership has
hroke'n down because people are doing what the computer should be doing for them.

U 25I
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Data level parallelism is helping to redress this balance. It is ideally suited to the analysis

of multiple images and the detection of subtle differences between them. In particular, it
is allowing stereo vision algorithms to be applied to terrain analysis in very high volume
applications. Stereo vision is the process by which humans are able to take in two slightly
different images (from the two eyes) and use the small differences arising from the two
different perspectives to determine the distances to the objects in the field of view. Using
the same principle, the Connection Machine system is able to analyze two aerial images
to determine the terrain elevation and to draw a contour map. Contrary to the apparent
ease with which humans can perform this process, it is a subtle and difficult computational

problem which no computer has yet solved perfectly. That is why humans are always
involved to "coach" the process. The Connection Machine system. with its natural ability
to handle large numbers of images and compare them in great detail, can help to drastically
reduce the amount of work people must do in this area.

This chapter describes the underlying algorithms for stereo vision on a data level parallel I
computer, and shows some of the implementation on the Connection Machine system. Many
detailed elements of an actual production system, such as straightening out misaligned
images and displaying intermediate results, have been omitted in order to focus on the
underlying algorithms. See references [2,3,5,11,12,13] for more information on machine
vision and the stereo matching problem.

4.2 Seeing in Stereo

Images are very large, inherently parallel data structures. Therefore the processing of images
is an application that is ideally suited for data level parallelism. An image is stored as an
array of picture elements, or pizele. An image with 256 pixels in the vertical dimension and
256 in the horizontal dimension has a total of 65,536 data elements. More detailed images,
with 1024 by 1024 pixels, have more than a million data elements. For black and white

images, the value stored in each of the pixels is the intensity of light at that point, ranging
from pure white through various shades of gray to pure black. (Pixels in color images
contain information describing the hue and saturation as well as the brightness.) The
contour mapping problem is one of extracting terrain elevation information from images
that, upon first inspection, contain only information about terrain brightness at each pixel.

The term stereo means "dealing with three dimensions.' Stereo vision is "the ability to
see in three dimensions.' Humans and many animals have the remarkable ability to take
in two images, obtained from slightly different perspectives-one from each eye-and fuse
them to perceive a three-dimensional world. The difference in perspective causes objects to

appear in slightly different places in the two images. The amount of positional difference is I
related to the distance of the object from the viewer. I

I
I
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I Because stereo vision occurs automatically in humans, we tend to be unconscious of the
process. A simple demonstration serves as a reminder. Hold a pencil in front of a piece of
paper and fix your gaze on the paper. Start to alternately close one eye and then the other,
then slowly move the pencil toward your face. Keep the paper stationary and your gaze
fixed on the paper while you move the pencil. The paper always seems to shift back and
forth by the same small amount, but the closer the pencil moves to you, the more it jumps

I in position between the two views.
The two images used in a stereo vision system are called a "stereo pair." Figures 4.1

and 4.2 give an example. Figure 4.1 shows a model of some terrain, as seen from an oblique
angle. Figure 4.2 shows a stereo pair obtained from directly above the terrain. Figure 4.2
can produce a vivid sensation of depth when observed with an appropriate stereo viewing
apparatus.

I

Figure 4.1: An oblique view of a terrain model wed in a demonstration of the contour
mapping algorithm.

i 4.3 Finding the Same Object in Both Images

Individual pixels within an image are not reliable indicators of objects. Two pixels, one
in each image, can have the same brightness value without being part of the same object.
Features larger than individual pixels must be found. The "edges" between areas of different
intensities make up an effective set of such features. An edge is a line, usually a crooked line,
along the boundary between two areas of the image that have different intensity. Instead
of trying to match pixels based an their intensity, the algorithms match them based on
the shape of nearby edges. The shape of edges is usually much more strongly related to

I
I
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i

Figure 4.2: A stereo pair of the terrain in Figure 4.1, obtained from directly above the
terrain.

distinct objects than the simple brightness value.

Figure 4.3 shows an example of edges. These edges were derived from the stereo pair in
Figure 4.2.

The process of finding edges falls into the category of image computations called "local
neighborhood operations." Individual pixels are classified based on characteristics of a
group, or neighborhood, of nearby pixels. Edges are found by having each pixel determine
whether the brightness of nearby pixels on one side of it is very different from the brightness
of nearby pixels on the other side. This will be the case only for pixels that pass this test:
they must lie between two image region, that are similar within themselves but iifferent from
each other. These edge pixels are detected by examining the local neighborhood of every
pixel in parallel, and storing the ones that pass the test in an array. Typically, only 10 to

20 percent of the pixels in an image get classified as edge pixels.

I
I

Figure 4.3: An example of edges. These edges were derived from the stereo pair shown in
Figure 4.2. They delineate the boundaries between areas of different intensity. I

I
I
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4.4 Matching Edges

Even though edges are much more closely tied to objects than simple brightness values, there
*is still a great deal of work involved in deciding whether an edge in one image corresponds

to a particular edge in the other image. Real images suffer from distortions due to several
sources. Distortions include random fluctuations or "noise" introduced in the electronic
imaging process, relative misalignment between the cameras, and irregular illumination.
In addition to these effects, which tend to blur the distinction between edges that match
and those that do not, there is a "bad luck" factor: an object or surface marking in one
image very often just happens to look like several markings in the other image. For these
reasons, the final choice of matches, and therefore the correct positional difference, is always
somewhat ambiguous.

If the detection of edges were a perfect process, deciding which positional difference is
best for each pixel would be simple. A local neighborhood of edges would align exactly at
one relative shift and very little at all the others. Because of the imperfections described
above, however, such a high level of precision is impossible. Every neighborhood of edges
in one image matches to some extent with many neighborhoods in the other image. The
competition is usually very close.

4.5 Measuring Alignment Quality

I To resolve the competition, the Connection Machine algorithms hold one of the images
stationary and "slide" the other one over it horizontally one pixel at a time. Each time the
moving image is slid one more pixel's distance, all the stationary pixels compare themselves
to the pixels to which they now correspond in the slid image. They record the presence
or absence of an edge alignment in a table in their own memory. Typically, the maximum
shift between two images is 30 pixels, so a table of 30 alignment matches is created in the
memory of each stationary pixel's processor.

This sliding procedure, using the edges from Figure 4.3, is illustrated in Figure 4.4.
Each of the 16 images shows an alignment table entry for each pixel. Black pixels indicate
positive alignment table entries, i.e., "match-ups" between the stationary and the sliding
images. For example, the 7th image shows alignment-table-slot 7 in each pixel. Thus every
black pixel in image 7 corresponds to a match-up between stationary and sliding edges when
the relative shift was 7 pixels.

The resulting alignment tables generally show several spurious matches, but also one
or two solid ones where the local neighborhood cf edges lined up vory tightly. When this
happens at a pixel, it is a signal that the correct shift (the correct positional difference) for
that pixel has been found.I

I
I
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As in the edge detection process, the alignment quality of every shift position in the
alignment table is measured by a local neighborhood operation. In this case, the operation
is the following: for each shift position, each pixel processor counts and records the number
of matching edge pixels in a small neighborhood around itself. This count or "score" will
be high for pixels whose nearby edges are tightly aligned with the edges in the other image
at the same position but displaced by the shift.fThe best shift for a given pixel is determined by comparing the alignment scores at
every position in its alignment table. The shift that has the highest score is chosen as the
correct shift for the pixel. This process takes place in parallel for all pixels; in this way aI shift is determined for each pixel.

Areas of tight alignment are clearly visible in Figure 4.4. For example, the small shifts
(1 through 4) are tightly aligned over low terrain (refer to Figure 4.1), and the large shifts
(13 through 16) are tightly aligned over high terrain. Match-ups in these areas will get high
alignment scores because they lie amidst many other match-ups.

I
4.6 Drawing Contour Maps

I The processing described so far yields the shift (or elevation) for every pixel that is part of
an edge. These pixels form a "web" of heights that approximates the shape of the terrain,
but is not yet smooth and continuous. It is full of holes (where non-edge pixels were) which
must be filled in by inte:polation.

Interpolation is accomplished by another local neighborhood operation. Each pixel that
is not on the web takes on a new elevation which is the average elevation of the pixels in
a small neighborhood around it. The neighborhood includes the four pixels above, below,
to the left and to the right of the pixel. The pixels that make up the web maintain their
original elevations; only the pixels in the holes change their values. This process is repeated
or "iterated" a few hundred times.

Pixels that lie in the middle of holes in the web have zero elevation. Therefore, when
they become the average of their neighbors, which also have zero elevation, their elevation
does not change. However, pixels that lie near the edges of holes in the web have neighbors
whose elevation is nonzero. Therefore, when they become the average of their neighbors,
they jump to a nonzero elevation. On the next iteration, these new nonzero pixels influence

their neighbors, in turn creating new nonzero elevations. Gradually, after a few hundred it-
erations, the pixels on the web-which remain unchanged throughout the process-"spread"
their elevations across the holes in the web, filling it in to create a smooth, continuous sur-
face from which a contour map may be drawn. An example of a contour map is shown in
Figure 4.5.

I
I
I
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I

=! I I

Figure 4.5: A contour map of the terrain model shown in Figures 4.1 and 2, computed on
the Connection Machine syetem.

4.7 Finding Edges on the Connection Machine System

A pixel is classified as an edge pixel if it lies between two image regions that are similar
within themselves but different from each other. This is the program that performs the
edge classification operation.

(*defun find-edges-between-left-and-rightlI (brightness-pvar threshold) I
(*let* ((average-brightness-on-the-left

(I (+11 (pref-grid-relativell brightness-pvar (11 -1) (1I -1))

(pref-grid-relativetl brightness-pvar (II -1) (II 0))
(pref-grid-relativell brightness-pvar (II -1) (II 1)))

(11 3.0)))

(average-brightness-on-the-right
(/1 (+11 (prel-grid-relativel! brightness-pvar (1I 1) (if -1))

(prof-grid-relative Il brightness-pvar'(! 1) (1I 0))

(pref-grid-relative!t brightness-pvar (11 1) (I 1)))

(if 3.0)))
(average-brightness-overall
(/ I (+I I average-brightness-on-the-left

average-brightness-on-the-right) I
I
U
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I (11 2.0))))

(ifl! (>1 (absolute-valuel I (-1t average-brightness-on-the-left
average-brightness-on-the-right))

(*!1 (11 threshold) average-brightness--overall))
0 ! 1)
( 0))))

The preceding program sequence calculates the average brightness in a small region to
the left (i.e., with relative x-coordinate -1, and relative y-coordinates -1, 0, and 1) and
the average brightness in a small region on the right side (with relative x-coordinate 1) of
each pixel. If, at any particular pixel, the difference between these averages is greater than
the specified threshold, then the pixel is marked with a one, meaning that it is an edge
pixel. Otherwise it is marked with a 0. The threshold is multiplied by the overall average
brightness, a process called "normalization." With normalization, the threshold adapts to
the image, becoming small in regions where the image is generally dark, and large where
the image is generally bright.

Since this program compares regions on the left and right sides of a pixel, it works only
for edges that are more or less vertical. It is easy to write a program that finds horizontal
edges by having it compare small regions on the top and bottom of a pixel, in the same way
that this program compares regions on the left and right. The same could be done edges
in both diagonal directions. The four programs may then be combined to find all edges in
the following way:

(*defun find-all-edgeall (brightness-pvar threshold)
(iii (oril (-I (11 1) (find-edges-between-left-and-rightlIII

brightness-pvar threshold))
(*1 (II 1) (find-edges-between-above-and-belowlI

brightness-pvar threshold))
(-1 (11 1) (find-edges-between-upper-left-and-lower-right I

brightness-pvar threshold))
(-1 (11 1) (find-edges-between-lower-left-and-upper-rightlI

brightness-pvar threshold)))
(ii 1)

(I 0)))

4.8 Matching Edges on the Connection Machine System

U The following program sequence implements the sliding procedure described above. One of
the edge images is held stationary and the other edge image is moved across it horizontally,I

I
I
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one pixel at a time. At each relative shift (1, 2, ... , 30), each processor records whether
an edge match has been found in the sliding image. This information is stored in a pvar
that represents one of the alignment tables discussed above. All of the alignment tables are
stored in the Connection Machine memory at the same time.

(defvar *array-of-pvars-holding-matches-at-each-shift* (make-array 30))
This is just a regular Lisp array, but each element of this
array will be a pvar. Notice that we'll try to find positional i

;; differences of up to 30 pixels. (Note: each one of the pvars
;;; in this array will hold an "alignment-table-slot" for every pixel,

;; as discussed in the text).

(*defun fillup-pvars-wherever-edges-align (left-edges right-edges)
;; This program records the edge-pixel match-ups at every shift; I
;; that is, this program creates "match-up images." as shown in

;; Figure 4.4.

(dotimes (i 30) I
(aset (if!! (-I! left-edges

(pref-grid-relativel right-edges (11 i) (11 0))

) ; ^This PREF-GRID-RELATIVE!! accomplishes I
(!t 1) ; the "sliding" process.
(it 0))

*array-of -pvars-holding-matches-at-each-shift*

i)))

The next step in the process is to decide at each pixel position which shift produced
the best match-up. Most locations will contain a somewhat random pattern of match-up

pixels. However, at some locations, the local neighborhood of match-ups will be very dense
and regular, indicating that the shift responsible for that match-up image is probably the
correct shift for that neighborhood.

The following *Lisp program measures the density or alignment quality of every neigh-
borhood. It does so by counting the number of l's (match-ups) in a square around each
pixel. The counting process is accomplished in parallel, for all pixels at once, on the Con-
nection Machine system. U
;;; The square for each pixel is to be centered on that pixel.
*;; Because a DOTIMES loop always produces values starting at zero.

*;; it is necessary to subtract one-half the width of the square

;;; from the loop variable in order to get relative indexes that I
I
I
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I ;;; are centered on zero.

(*defun add-up-all-pixels-in-a-square (pvar width-of-square)
(let ((one-half-the-square-width ( width-of-square 2)))

(*let ((total (II 0)))
(dotimes (relative-x width-of-square)

(dotimes (relative-y width-of-square)
(*set total

(+!! total

(pref -grid-relative I I
pvar
(- relative-x one-half-the-square-width)

I (- relative-y one-half-the-square-width))))))total)) )

At this point, it is a simple matter to record the alignment quality or score for every
pixel.

(defvar *array-of-pvars-holding-scores-at-each-shift* (make-array 30))
;;; Another Lisp array holding *Lisp pvars.

The next step is to fill all the elements of the Lisp array with *Lisp pvars. The Nth
element of the Lisp array holds a pvar containing the scores, or alignment qualities, of all
the matches that occurred when the edge images were shifted by N pixels relative to each
other. (Note that this program records scores only at locations where match-ups occurred.
Other locations have no score, which reflects our original intention of matching edges, not
the holes between them.)

C*defun fillup-pvars-with-match-scores (width-of-square)

;; WIDTH-OF-SQUARE will typically be 21.
(dotimes i 30)

(*let '((sum-of-all-nearby-pixels

(add-up-all-pixels-in-a-square
(aref *array-of-pvars-holding-matches-at-each-shift* i)

width-of-square)))
(*if (=II (aref *array-of-pvars-holding-matches-at-each-shift* i)

(i! 1)) ;;; Record a score wherever there was a match-up.
(*set sum-of-all-nearby-pixels

*array-of-pvars-holding-scores-at-each- shift*
)))))I

I
I
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Now that the score for every match-up has been recorded, there is only one more step

required to establish which of the match-ups is correct. The following *Lisp program loops
through all the shifts, keeping track of the best score at each pixel. The shift that produced
the best score at each pixel is recorded as the "winning shift."

;;; This function computes the web of known shifts. Recall that

;; the shift at each pixel corresponds directly to the elevation.

(*defun find-the-shifts-of-the-highest-scoring-matches )
(*let ((best-scores (11 0))

(winning-shifts (1 0)))
The following DOTIM4ES loop makes sure that each
pixel in the BEST-SCORES pvar contains the maximum

;; score found at any shift.

(dotimes (i 30)
(*if (>1 (aref *array-of-pvars-holding-scores-at-each-shift* i)

best-scores) I
(*set best-scores

(aref *array-of-pvars-holding-scores-at-each-shift* i))))

The following DOTIMES loop records a "winning" I
shift at every pixel whose score is the best.

(dotimes (i 30)

(*if (all (aref *array-of-pvars-holdig-scores-at-each-shift* i)
best-scores)

(*set winning-shifts (! (1+ i)))))
winning- shifts))

4.9 Drawing Contours on the Connection Machine System

A contour map cannot be constructed without a smooth, continuous surface on which to
draw the lines. All of the processing so far has produces a web of known elevations (returned
by the last *Lisp function above). Interpolation across the holes in the web produces a

continuous surface. I
I
I
I
I
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(*defun fill-in-web-holes (web-of-known-elevations times-to-repeat)

Each time through the loop, every pixel not on the web (i.e.,
;; every pixel that is not zero to begin with) takes on the

;; average elevation of its four neighbors. Therefore, the web
pixels gradually "spread" their elevations across the holes,

"; while they themselves remain unchanged.
(dotimes (i times-to-repeat)

(*let ((not-fixed (zerop web-of-known-elevations)))

(*if not-fixed
(*set web-of-known-elevations

(/1 (+11 (pref-grid-relativell
web-of-known-elevations
(1I 1) (II 0)) ;Neighbor to the right

(pref-grid-relative l
web-of-known-elevations

(11 0) (II 1)) ;Neighbor above

(pref-grid-relativell
web-of-known-elevations
(1! -1) (II 0)) ;Neighbor to the left

(pref-grid-relativell
web-of-known-elevations
(II 0) (!! -1))) ;Neighbor below

4))))))
web-of-known-elevations) ;;; this is now a more or less smooth surface.

The following code takes the smoothed-out web and constructs a contour map in the
form of a plane of black-and-white pixels suitable for display on a graphics device.

(*defun draw-contour-map (number-of-contour-lines
pvar-of-smooth-continuous-elevations)

The idea is to divide the whole range of elevations into
;; a number of intervals, then to draw a contour line at every

interval.
(let* ((max-elevation (*max pvar-of-smooth-continuous-elevations))

(min-elevation (*min pvar-of-amooth-continuous-elevations))

(range-of-elevations (- max-elevation min-elevation))
(contour-line-interval ( range-of-elevations

number-of-contour-lines)))

I
I
I
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;; Now the variable CONTOUR-LINE-INTERVAL tells us how many
;; elevations, or shifts, to skip between contour lines.

(if!! (zerop!!
(mod!! (- I pvar-of-smooth-continuous-elevations

S!! min-elevation))
(1 I contour-line-interval)))

!! 1) ;; This IF!! draws all the elevation contours
(! 0)))) ;; at once, returning a bit map suitable for

;; for immediate display. f
4.10 Timing and Performance

A production level version of the contour mapping algorithm described in this chapter has
been implemented and extensively tested on the Connection Machine system. Parameters
such as the size of the images and the range of positional differences ("shifts") are variable,
depending on the application. A typical program run processes images containing 512 x 512
(262,144) pixels, while allowing for positional differences from 0 to 30 pixels. In such a mode,
the Connection Machine system performs approximately two billion (2 x 109) operations
during the most time-consuming phase of the algorithm, the so-called 'inner loop," in
which the match-ups are detected and their alignment quality is measured. This inner loop
is executed in less than two seconds.

4.11 Summary and Implications

Contour mapping using stereo vision is an example of an image processing application that
is sophisticated and computationally expensive. The Connection Machine system, because
it readily accommodates itself to the inherently parallel structure of image data, made it I
easy to conceptualize and to program the contour mapping algorithm. The simplicity and
brevity of the programs shown above is evidence of this natural fit.

The raw speed of the Connection Machine system is as valuable as its architecture. The I
system can extract elevation information from large amounts of visual data at very high
rates. This speed allows scientists and engineers who are developing new techniques in
computer vision to try their ideas "on the fly.' A short turnaround time for experimenting
with new ideas is essential for the rapid development of the field of computer vision. The
effects of various program modifications are realized almost instantaneously. The system's
computational power is a valuable aid in the design and implementation of sophisticated
algorithms.

I
I
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*Chapter 5

IThe C* Programming Language
I

C* (pronounced ace star) is a simple extension to the C programming language [6,101 that
exploits the power of the Connection Machine architecture. C* is (almost) a strict extension
of C; any valid C program, if it avoids the use of a small number of C* reserved words, is
also a valid C* program. A few new features of the language serve to indicate where data is
stored and which operations are executed in parallel in the Connection Machine network.

5.1 C* Extensions

In order to indicate whether a variable is located on the host or in the Connection Machine
memory, two storage class identifiers mono and poly have been included in C*.

mono Jnt x; /* x resides in the host memory */
poly int y; /* y resides in the Connection Machine memory */

fl The modifier poly declares variables present in all processors.

The majority of parallel code is standard C code. Parallel functions are simply distin-
guished by the identifier poly. It is a mark of the general-purpose nature of the Connection
Machine architecture that the full C language is available for programming the processors
of the Connection Machine system. Likewise, it is a mark of the simplicity of the architec-
ture that the C language suffices for this task. In fact, no new language features need to
be introduced in order to perform parallel control flow, interprocessor communication, and
memory allocation. The real power of C* comes from the natural parallelization of familiar
constructs of C.
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5.1.1 Parallel Control Flow

Inside of a parallel function, the normal C control-flow statements, such as if and while,
work as expected. This is perhaps unexpected to someone experienced with other parallel I
languages. For example, an if statement may have a conditional expression whose value is
different in different processors:

poly salary;

if (salary <- 0)
salary - fixup.salaryO;

It would clearly be an error for all processors to make the call to fixup-salary. The
way C* handles such a statement is to reduce the active set of processors, by temporarily
inactivating all those whose salary variables are positive. The body of the if statement is
run, and then the original active set is restored. Such conditional statements can be nested
to any degree.

The while statement can also operate in parallel. At each evaluation of the loop's

conditional expression, more processors can drop out of the active set; they stay inactive
until the loop is finished. Finally, when all processors are finished with the loop, the
statement is done, and the original active set is restored. For example:

poly resumes-to-read; I
while (resumes-to.read > 0) {

/* Read ten resumes at a time. */

resumes-to-read -- 10;

In this case, all processors with resumes.to.read between I and 10 execute the loop body
exactly once.

All other standard C control constructs are handled in similar ways in C*; even goto is

accommodated. The program behaves as if the standard C code were running separately

in each processor, with processors that are doing the same thing doing it at the same time. U
I
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5.1.2 The Selection Statement

In order to execute code in a selected set of processors, an additional statement called the
selection statement is included in C*. Selection statements may be used within any C*

function. The selection statement has the form:

[selector]. statement

The selector indicates a set of processors. These are activated, and the statement is
executed within those processors. For example, given the following declaration,

processor managers[100];

the following statement

[[100]managers].{ salary *- 1.06; }

or, more simply,

I[](managers].{ salary *- 1.06; }

selects all 100 of the managers, and gives them a six percent raise. The code:

I ((50]managersJ.{ salary *- 1.11; )

gives the first 50 an eleven percent raise, while this:

(managers[0] .managers[2]] .{ salary -- 1000; }

singles out the first and third managers for a pay cut. (More complicated forms of selection
are also available.)

5.1.3 Computation of Parallel Expressions

C* extends the meaning of C expressions to parallel computations by means of two simple
rules. The first rule says that if a single value (typically of storage class mono) is combined
with a parallel value (of class poly), the single value is first replicated to produce a poly
value. (In hardware terms, the single value is broadcast to all relevant processors.) For
example, in the expression (salary > 20000), the single value 20000 is replicated to match
the parallel variable salary. This rule is an addition to the rules of "usual conversions" in
plain C.

The second rule says that an operation on a parallel value (or values) must be processed
as if only a single operation were executed at a time, in some serial order. In the expression
(salary > 20000) it is as if we took first one salary value and compared it to 20000,
then another, and so on, doing the comparisons one at a time.I

I
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Fortunately, we can analyze the > operation and determine that doing all the compar- n

isons at once will produce the same result, because doing so will not affect the outcome.

This is hardly surprising, and it is exactly the effect we want anyway, so why do we have
the "as if serial" rule at all? It is because some operators do have side effects: assignment
operators. Consider the expression

total-payroll +- salary;

Now total-payroll is a single value (what in C is called an Ivalue, because it occurs on the I
left side of an assignment). By the first rule it is replicated. We then have many assignments
to perform, one for each value in the parallel value salary: f

total-payroll + salaryl;
total-payroll + salary_2;

total-payroll +u salary_3; I
I

The second rule guarantees that the program behaves as if a!! of these assignments were
performed in some serial order. Which order does not matter; the result is the same. The
point is that if these assignments were executed in parallel some updates might be lost; U
but C* guarantees that all the salary values will be correctly added into t3tal-payroll.
(Doing this efficiently is handled by the C* implementor.)

A C assignment operator may be used as a unary operator in C* to reduce a parallel
value to a single result that may be further operated upon. For example,

(+- salary)

adds up the salaries for all persons for which processors are active, and

(+- salary)/(+ ((poly) I)))

computes the average of all salaries because the expression

((poly) I)

makes a 1 for every active processor and i
(+- ((poly) 1)

adds up all the l's, thereby counting all the active processors.

In C*, "<>" is the "minimum" operator and "><" is the "maximum" operator. The

expression "a >< b" means the same as "(a > b) ? a : b". The assignment operators

<>- and ><- are also defined: 'a <>- b" assigns b to a if b is less than a. The expression
(><- salary) finds the largest salary, and (<>- salary) finds the smallest salary. I

I
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Il 5.1.4 Data Movement

C* has no language extensions to handle data movement or interprocessor communication
per se. Instead, the normal C operations are used; the Connection Machine architecture
allows random access to the desired datum, wherever it is in the system.

Within the code of a poly function, the keyword this is a C* reserved word whose value
is a pointer to the currently executing processor. This value is sometimes called the self-
pointer. If many processors are executing, each will have its own self-pointer. References
to the processor's variables implicitly refer to the self-pointer: saying salary is the same
as saying this->salary. Explicit references to this are useful for accessing the memory

of neighboring processors through indexing.
The key point is that any processor may contain a pointer to data in the memory of any

other processor, and access through that pointer is supported by the Connection Machine
router. All interprocessor communication can therefore be expressed in C* merely by the
usual explicit and implicit pointer indirection mechanisms. For example, to increment a
neighbor's salary field, and then decrement one's own based on the result, the following
code might be used:

this[I].salary -'- 1000;
salary -- this[l].salary * .10;

Similar expressions can also be used to broadcast data throughout the system, to transfer
data between the host and Connection Machine processing network, or to collect data from
many sources into one location.

5.2 Summary

The C* language is a version of the standard C language suitable for programming the Con-
nection Machine system. Because of the simplicity and power of the Connection Machine
architecture, C* itself is a simple yet powerful extension of C. The Connection Machine
memory is treated as a large section of host-accessible memory with active objects stored
in it. Because standard C is already excellent at manipulating structures, pointers, and the
like, relatively few new language features are needed to deal with the Connection Machine
architecture. All the familiar C language constructs acquire the power of parallelism easily

I and naturally.

I
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*Chapter 6

*The *Lisp Programming Language

*Lisp (pronounced star lisp), is an extension of Common Lisp [91, a standard dialect of Lisp

that is found on a variety of computer systems. Lisp has many features that are common
to most programming languages, but its unusual structure and syntax make the programs
a bit difficult to read for someone who has mainly had experience with block structured
languages such as FORTRAN or C.

This chapter covers both Lisp and *Lisp in sufficient depth to make it possible to ander-
stand the program examples in this book. See references [9,15,16] for a deeper understanding
of the Lisp language and its structure.

6.1 Fundamentals of Lisp

I What most people remember about Lisp is that it uses lots of parentheses. And it is true-
Lisp does. But it is not necessary to understand the ful implications of the parentheses
to understand the sample programs. Roughly, in a Lisp expression the first thing that
comes after the open parenthesis is the function name, and after that are the arguments.
So (+ 7 A) would call the function +, which adds 7 and the value of the variable A, and
returns the result.

Lisp function calls can be nested as they can in other languages. For example:

f (* 6 (+ 1 2 3))

would first add together 1, 2, and 3, and then multiply the result by 5, giving 30.

Most Lisp programs are indented to help reveal their structure and to show how many
levels deep parentheses have been nested. Expert Lisp programmers keep their code properly
indented, and rely on the indentation as much as the parentheses when reading code.
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6.1.1 Lisp Functions

Functions are the program building blocks of Lisp. Unlike many other programming lan-
guages, Lisp does not have a main program followed by a series of functions. In Lisp
everything is a function, and programs are executed by invoking those functions from an I
interactive Lisp interpreter.

The Lisp function-defining operation is called DEFUN. The first argument to DEFUN is
the name of the function that is being defined, the second a list of its arguments; these are
followed by the operations to be performed. For example:

(defun add-three x) (+ x 3)) f
defines a function named add-three that takes one argument named x, and the operation
that is performed by the function is (+ x 3).

6.1.2 Variables

It is not necessary in Lisp to predefine variables, but it is often done for clarity. The i
mechanism is straightforward:

(defvar a 25)

defines a variable named a with an initial value of 25. Variables defined with defvar are
global variables that can be accessed by any function at any time. f

Temporary variables are defined in Lisp with the let operation, which takes a list of
variable-value pairs, and is followed by a sequence of operations to be performed. For

example,

(let ((temporary 25)
(x 49))

(print (+ temporary x))
(print (* temporary x)))

allocates two temporary variables temporary and x, assigns them the values 25 and 49
respectively, prints their sum and product, and then deallocates them when the let is
exited.

Variables have their value set with the setq function which takes as its arguments a f
variable name and a value. So

(setq b 34.5)

sets the variable b to 34.5. I
I
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6.1.3 Program Control Structure

The if construct is a simple method for conditionally controlling the flow of a program; it
is used in several places in the example programs. It takes a test clause, an expression to
evaluate if the result of evaluating the test clause is true, and, optionally, an expression to
evaluate if the result is false. The following simple example shows how if is used.

(it (- a 10)
(print "a is 10")
(print "a is not i0"))

Several of the examples use dotimes, a facility for executing a series of expressions a
specified number of times. As an example,

I (dotimes ( 10)
(print j))

fprints the integers from 0 to 9.

6.2 *Lisp Extensions

A *Lisp program looks much like an ordinary Lisp program. The biggest distinction is
that *Lisp operations manipulate data stored in the Connection Machine hardware, while
Lisp operates exclusively on the host processor. There are no instructions stored in the
Connection Machine processors; instructions are generated from the *Lisp program and
broadcast to the Connection Machine system.

The names of most *Lisp functions either begin with an "*" or end in "! I" (meant
to look like two parallel lines, and pronounced bang bang) which means that they perform
operations on parallel variables. This is only a naming convention and does nothing but
distinguish functions that work with the Connection Machine system and parallel variables
from functions that don't. User programs may also follow the convention, but it is not a
requirement.

This section describes enough *Lisp to make the example programs understandable.
As part of that, it is first necessary to describe a few of the fundamental features of the
Connection Machine system.

6.2.1 Processors

A processor is the entity that operates on data in parallel. Each processor has a unique
address that allows it to be directly accessed. The address is made up of one or more num-
bers depending how many dimensions the Connection Machine hardware is simulating. AI

I
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one dimensional machine would take one number as an address, a two dimensional machine i
two numbers, etc. *Lisp has instructions that can directly access data in the Connection
Machine processors via these addresses.

6.2.2 Parallel Variables

The parallel variable mechanism is one of the key programming differences between *Lisp
and sequential programming languages. A thorough understanding of what parallel vari- i
ables are and how they work is crucial to understanding the example *Lisp programs in
this document.

On a serial machine a variable may have only one value at a time. On the Connec-
tion Machine system a parallel *Lisp variable has as many values as there are processors.
Descriptors for parallel variables, or pvars, reside on the host computer, and the values of
those parallel variables are in the Connection Machine memory.

The *Lisp expression for defining a pvar is similar to the Lisp mechanism for allocating
a variable. The expression

(*defvar b (11 5))

defines a pvar named b which has a value of 5 on every processor in the machine. The
function *defvar is the parallel version of Lisp's defvar. The expression I

is the part of the defvar that actually does the allocation of a field with a value of 5 in

every Connection Machine processor.
Values are retrieved from processors with the pref function. For example,

(pref b 7)

would return the value of pvar b in processor 7. Setting a value in a processor is accomplished ii
with the Lisp setf function.

(sett (prof b 3) 10)

would set the value of pvar b to 10 in processor 3. The first argument to setf describes
how to access the field that is going to be altered and the second argument is the new value
of the field. I

The following series of *Lisp expressions show in some detail how to allocate and use
pvars.

First define some pvars: I
(*deivar a) I

I
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(*defvar b (!! 5) "This is a documentation string.")

(*defvar c (1! -2.87))

(*defvar d til)
(*defvar e (1+1! (self-addressl!)))

These statements created five pvars. The last four have been initialized with specific
values: b is a Lisp symbol that has as a value a pvar whose contents is the integer 5 in
each processor, c contains the floating point number -2.67 in each processor, d contains
the boolean value true in each processor, and e contains the address of the next higher
processor. The function self-address is a function that returns a pvar which contains the
address of the selected processor.

Now read some of the values using pref.

I (pref c 0)

returns the lisp value -2.67 since that is what is contained in pvar c in processor 0.

(pref d 385)

returns the lisp value t since that is what is contained in pvar d in processor 0.
Now do some arithmetic on these pvars:

(*set a (+11 b c))

will set the contents of pvar a to be the sum of the contents of pvar b and pvar c. Notice that
c contains floating-point values. The integers contained in b are converted to floating-point
numbers and the result in a will be floating point as well. Expressions can be nested:

(*set a (-11 b (*11 a (II 2))))

This expression sets a to the difference of b and twice a. This simple expression could cause
thousands of such operations to go on simultaneously The expression (I 2) returns a
pvar that is 2 in all processors.

This point is important. The expression

(+1' a 2)

is an incorrect *Lisp expression. The variable a is a pvar, whose values are stored on
the Connection Machine system, while the integer 2 is a Lisp object stored on the front
end system. It is necessary to convert the 2 to a parallel value before doing any parallel
'.omputation.I

I
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6.2.3 Accessing F ears Relative to a Grid

Two of the example programs, fluid flow and stereo matching, make heavy use of the
Connection Machine system's grid mechanism, which facilitates communications between
processors for problems with two-dimensional data structures. For example say image was
a pvar containing a two-dimensional image. The following expression would shift the entire
image over by one pixel in the x direction and place the result in shifted-image:

(*set shifted-image (pref-grid-relativell image (11 1) (!! 0)))

in this example the (! 1) specifies that there is a shift of 1 in the x-dimension, and the
! ! 0) specifies that there is no shift in the y-dimension.

6.2.4 Selection

In *Lisp it is possible to do an operation in a selected subset of all processors. The *Lisp

function *when is used to do that selection. For example:

(*when (-!! a (1 5))(*set a (+!1 (II 2))))

adds two to a in all processors in which a has a value of 5. 1
6.2.5 *Lisp Programs I

*Lisp programs are defined in much the same way that Lisp functions are defined. The

main difference is that *defun is used instead of defun to define functions that either take
a parallel variable as an argument or return a parallel variable as a result.

6.3 Summary

*Lisp is a simple extension to Common Lisp that integrates the Connection Machine system

into an ordinary serial programming environment. For someone familiar with Lisp, the
essentials of *Lisp can be learned and put to productive use within a few hours.

I
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I Chapter 7

I The Connection Machine System
I

The Connection Machine system from Thinking Machines Corporation is the first computer
to implement data level parallelism in a general purpose way. It combines a very large num-
ber of processors with the communications capability necessary to match data topologies
exactly. This chapter describes the hardware implementation of the Connection MachineI system.

7.1 Connection Machine Internal Structure

I As described in Chapter 1, the Connection Machine system operates by receiving a stream
of instructions from its front end computer. A microcontroller receives the instructions,
expands each of them into a series of machine instructions, then broadcasts the machine
instructions, one at a time, to all processors at once. The instructions coming in from the
front end are referred to as "macro-instructions." The instructions broadcast to the individ-
ual processors are called "nano-instructions." Macro-instructions are similar to assembly
language instructions on a conventional machine. They are the instruction codes produced
by the Connection Machine language processors. In the sections that follow, names of
macro-instructions appear in italics.

The Connection Machine system includes 65,536 physical processors, but may be con-
figured for a much larger number of logical processors by means of the cold-boot command.
Cold-boot takes two arguments that allow a two-dimensional array of virtual processors per
physical processor. Cold-boot(4,4), for example, sets up the machine in the million-processor
mode (or, more precisely, the 1,048,576 processor mode) because each of the 65,536 proces-
sors will simulate 16 (4 x 4) virtual processors. The same number of virtual processors couldbe established by the command cold-boot (16, 1). Since virtual processors are so commonly
used, they are referred to simply as "processors". Where it is necessary to refer to one of

* 51
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the 65,536 hardware processors, the term "physical processor" is used.

Eachl physiczl proc-_ssor l a. 4096 bi*q of memory, totalling e'? mgabyte9 for the macbine
as a whole. In the million-processor mode, each processor has 256 bits of memory. Memory
is divided into a data area and a stack area, with the layout being the same in each processor.
A single, system-wide register, the stack limit, defines the boundary between stack space
and data space. The stack pointer is also a system-wide register. The stacks in all processors
act in unison.

Memory is bit-addressable; all data fields are of arbitrary length. For numeric computing
there are three standard formats: unsigned-integer, signed-integer, and floating-point. Each
is of arbitrary length. In particular, floating-point numbers can be of any length. Picture
and word data are of arbitrary format and length.

A complete Connection Machine memory address has three parts. The first part indi-
cates a physical processor. The second part indicates one of the virtual processors simulated
by that physical processor. (This part is empty if there is only one virtual processor per
physical processor.) The third part is an address within the memory of that virtual proces-sor.n

Data may be exchanged between the Connection Machine memory and the front end in
any of three ways: slicewise, processorwise, and arraywise. Read-slice reads a single bit of
information from the memory of each of a series of consecutive processors, assembles them
into a signed integer, and passes the integer to the front end. Write-alice moves data from
the front end to the Connection Machine memory. Slice operations are typically done 16 or
32 processors at a time. Read-proce8or and write-procesaor move a single field between the
front end and a single processor. Read-array and write-array move arrays of fields between I
the front end and a set of contiguous processors.

7.2 Connection Machine Instruction Flow

All instructions flow into the Connection Machine hardware from the front end. These I
macro-instructions are sent to a microcontroller, which expands them into a series of nano-
instructions. Some expand into just a few nano-instructions. Others expand into hundreds
or thousands. It is also possible to feed nano-level instructions to the microcontroller and
control the hardware directly. It is not, however, efficient to do so, because the front-end
cannot supply these instructions rapidly enough to keep the system busy. (Direct control
of the hardware from the front end is provided primarily so that the front end can support I
debugging and diagnostic aids.)

Nano-instructions are broadcast to all processors in parallel. Processors, however, have
the option of "sitting out' a series of instructions. A one-bit flag within each processor, the
contezt flag, determines whether that individual processor will respond to the instruction I

I
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for not. Most of the instructions discussed in this chapter are "conditional" in the sense
that they take effect only in the processors that are active, that is, whose context flag is 1.

The Connection Machine system is implemented with four physical microcontrollers,
one for each section of 16,384 processors. If the system has a single front end, that front
end is connected to all four microcontrollers and therefore drives all 65,536 processors. A
system may be configu..red with up to four front ends. A crossbar switch called the Nexus
makes the connections between front ends and microcontrollers. It is possible, therefore,
to have four users operating simultaneously Each works at a separate front end, and each
has a separate instruction stream executing in a section of the system's processors. The
examples in this chapter, however, assume that the system is operatir - vith a single front

end.

1 7.3 Computational and Global Instructions

Computational instructions operaite or -;red integers, unsigned integers, and floating-point
values. They include unary operators such as not, negate, absolute value, and square root.
All standard binary operators such as add, subtract, multiply, divide, compare, and shift are
included. These instructions operate in all processors simultaneously; each processor uses

the data that is stored in that processor's memory.
The random instruction places an independently chosen pseudo-random number in each

processor. Two processors may or may not be assigned the same random value.

Global instructions produce a single result from data items stored in the memories of
all selected processors. Global-logior, for example, takes the inclusive OR of a field in each

processor's memory. Global-count examines a single-bit field in all processors and returns
the number of "1" bits. Global-add sums multi-bit fields. Global-max and global-min return
the largest (smallest) value found in a specified field across all selected processors. Global-
add operates on unsigned integers, signed integers, or floating point values, as do global-max

and global-min. The enumerate instruction places a different consecutive integer into each
of a selected set of processors.

I 7.4 Communications Instructions
I iThe simplest form of communication between Connection Machine prcsosis between

nearest neighbors. Each processor is wired to its neighbors to the North, East, West,
and South by a communications network called the NEWS grid. Four instructions, get-
from-north, get-from-east, get-from-west, and get-from-south control the transfer of data.
Information is passed one bit at a time.

General intercommunication and dynamic reconfiguration is performed by a much moreI
I
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powerful communications system, the Connection Machine router. It allows full messages
to be sent from any processor to any other; the sending processor simply needs to have the
dddretb uk the de.-iL-.ion processor. Messages may be of any length. Typical messages
contain 32 bits of information; adding the address information and headers results in a I
transmitted package of 50 to 60 bits (depending on the number of virtual processors being
used).

Each of the 65,536 physical processors is connected to 16 other physical processors in I
a special organization (a 16-dimensional hypercube) that provides large numbers of direct
paths to distant parts of the system. Every processor is connected to 16 other processors,
namely those whose binary address is different in just one of the 16 bits. The following I
example shows the interconnections of processors 6 1o and 20701o. The binary addresses are
shown in parentheses.

2 0000 0000 0000 0010)
4 (0000 0000 0000 0100 )
8 C0000 0000 0000 0110 ) 1
7 (0000 0000 0000 0111 )

14 C 0000 0000 0000 1110 )
22 C 0000 000 0001 0110 )
38 C0000 0000 0010 0110 ) I
70 (0000 0000 0100 0110 )
134 (0000 0000 1000 0110 )
282 ( 0000 0001 0000 0110 )
518 0000 0010 0000 0110 )
1030 (0000 0100 0000 0110 )
2054 ( 0000 1000 0000 0110 )
4102 ( 0001 o0o0 0000 0110 )
8198 (0010 0000 0000 0110 )

16390 (0100 0000 0000 0110)
32774 1000 0000 0000 0110 1

I
22 0000 0000 0001 0110)

2064 ( 0000 1000 0000 0110 ) I
208 ( 0000 1000 0001 0010 )
2068 0000 1000 £01 0100)
2070 ( 0000 1000 0001 0110 )
2071 0000 1000 0001 0111)
2078 ( 0000 1000 0001 1110 )2078( 000 100 001 1101

I
I
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I 2102 C 0000 1000 0011 0110 )
2134 C 0000 1000 0101 0110 )
2 ( OCC 1000 1001 0110 )
2326 C 0000 1001 0001 0110 )
2582 C 0000 1010 0001 0110 )
3094 C 0000 1100 0001 0110 )
6166 ( 0001 1000 0001 0110 )
10262 C 0010 1000 0001 0110 )
13454 C 0100 1000 0001 0110 )
34838 C 1000 1000 0001 0110

These two sets of addresses have a corru-non connection. Processors 6 and 2070 both
connect to 22. Thus it is possible to pass a message, for example, from processor 14 to
processor 10262 in just four steps. The router at processor 14 passes it to the router at
processor 6, which passes it to 22. From there it goes to 2070 and then to 10262.

7.5 The Routing Process

Connection Machine physical processors are grou ped sixteen to a chip. There is a single
router on each chip that services all sixteen processors. Hence four of the sixteen routing
connections are internal to an individual chip. It takes a maximum of twelve steps to move
from any chip to any other chip. During message routing, the system goes through all
twelve steps. If the router on a given chip has a message whose relative address has a "1"
in the low order bit position, it sends that message on the first of the twelve steps to the
chip whose address differs in that same bit (i.e., the next chip). If the message it has has
a "0" in the low order relative address bit, the on-chip router does not send any data on
that step. The process continues through all twelve steps, with all router chips responding
in the same way.

The basic message passing instruction is send. Arguments to send specify the length of
the message and two memory fields. Within each processor, one field contains the message
data, and the other contains the address of a destination processor. Send causes all active
processors to initiate message transfers at once. The special Connection Machine routing
hardware handles the volume of messages efficiently. An individual router on a chip may
receive as many as twelve messages from other chips during a message cycle, one from each
other chip that it is connected to. It can in turn send as many as twelve messages, one
on each of the wires. If two messages need to go down the same wire, one is buffered

until the next routing cycle. If an individual router becomes extremely busy, it can defer
acceptance of any new messages from its own processors. Deferral keeps the router free to

I
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handle messages from other chips. If the chip's buffer space still fills, it refers messages to
neighboring chips.

Simultaneous message sending introduces the possibility that the same location in the
same processor will receive two or more messages in the same cycle. The simple send
instruction gives unpredictable results in this case. Several variations of the send instruction,
such as send-with-add, deal with this possibility. If two or more send-with-add messages
arrive at the same destination, they are summed. Send-with-overwrite causes one message
to be delivered intact, discarding all other messages directed to that destination. Other
options include send-with-max and send-with-logior.

7.6 Dynamic Reconfiguration

A processor address is all it takes to establish a link on the system. This flexibility allows
applications to reconfigure dynamically. A number of intructiuns support this capability.
The my-address instruction allows processors to determine their own addresses, so they
can send them to other processors and thus establish new connections. The processor-cons
instruction allows each selected processor to find another "free" processor.

Processor-cons specifies the address of a one-bit field, the "free flag." A processor is
considered free if it has a "1" in that field. The system looks in parallel for processors with
l's and passes to each selected processor the address of a different free processor, and at
the same time clears the free flags of those free processors.
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*Chapter 8

I Looking to the Future
I

At one level this repz'7 ;-3 about algorithms for data level parallel computers: algorithms
for looking at the whole problem at once. But at a deeper and more important level, it is
really the story of what happened when three very creative people teamed up with a new
style of computer, the Connection Machine system. All three people saw new ways to break
through old barriers. The computer allowed them to confirm their intuition quickly and
then to build upon that intuition.

The intuitive insight behind the document retrieval algorithm is the fact that documents
contain a rich set of synonyms for their main content topics. Comparing whole documents
could eliminate the need to play guessing games with key words. The idea had never been
effectively tested because no conventional computer could execute the algorithms quickly
on large data bases. In fact, the first tests on document retrieval by whole document com-
parison were not particularly encouraging. They were run on a data base of 150 documents,
which turned out to be inadequate. When the test was widened to 1500 documents, results
were more encouraging. At the level of 15,000 documents, they were outstanding. With-
out a data level parallel computer such as the Connection Machine system, there would
have been no way to even try the approach with 15,000 documents. Test runs would have
taken days. Interaction would have been impossible. Now that it has been shown that the
algorithm works, whole new possibilities for data base system design are opening up.

The intuitive insight behind the fluid flow algorithm is the fact the behavior of fluids can
be simulated without extensive arithmetic computations. Modeling the primitive behaviorfof molecule packets on a large enough scale can elicit the same macroscopic behavior as
real fluids. Tests on the Connection Machine computer suggest strongly that it does. The
result is a new and potentially important avenue of scientific investigation.

The intuitive insight behind the contour mapping algorithm is the fact that sophisticated
image processing and vision algorithms can be tested on large amounts of data with a small
amount of programming effort. The drawing of contour maps, for example, is greatly
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simplified by data level parallelism, because it is not necessary to identify the contours one

by one and then traverse the perimeter of each one sequentially; instead, each pixel of the
contour map "draws itself" in parallel with all the other pixels. Instead of having to break
up each phase of the problem into smaller pieces for sequencing purposes, the programmer
can tackle it all at once. The result is smaller and simpler programs.

The revolution in data level parallel computing is here. The three algorithms described

in this report are only a beginning. But they make an important point: innovative users
are an integral part of the story. Users who are stimulated to look at old problems in new
ways. Users who revisit problems given up on as impo-sible in the 60's and 70's. Users who
know that a simpler solution is a better solution. These are the users who will assure that i
the future belongs to computers that look at the whole problem at once.
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